How Does the CO2 in Supercritical State Affect the Properties of Drug-Polymer Systems, Dissolution Performance and Characteristics of Tablets Containing Bicalutamide?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Solid Dispersion Preparation Using Supercritical Carbon Dioxide (scCO2)
2.2.2. Scanning Electron Microscopy (SEM)
2.2.3. Laser Diffraction Measurements
2.2.4. Powder X-Ray Diffraction (PXRD)
2.2.5. Differential Scanning Calorimetry (DSC)
2.2.6. Preparation of Tablet Blends
2.2.7. Tableting Process and Tablet Characterization
2.2.8. Dissolution Studies
2.2.9. Contact Angle Measurements
2.2.10. Stability Studies
3. Results and Discussion
3.1. Solid-State Characteristics of Solid Dispersions
3.2. Bicalutamide Dissolution
3.3. Characteristics of Tablets Containing BCL-PEG6000, BCL-PLX407 Solid Dispersions and Raw BCL
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Thiry, J.; Kok, M.; Collard, L.; Frere, A.; Krier, F.; Fillet, M.; Evrard, B. Bioavailability enhancement of itraconazole-based solid dispersions produced by hot melt extrusion in the framework of the Three Rs rule. Eur. J. Pharm. Sci. 2017, 99, 1–8. [Google Scholar] [CrossRef]
- Fujii, M.; Okada, H.; Shibata, Y.; Teramachi, H.; Kondoh, M.; Watanabe, Y. Preparation, characterization, and tableting of a solid dispersion of indomethacin with crospovidone. Int. J. Pharm. 2005, 293, 145–153. [Google Scholar] [CrossRef]
- Abet, V.; Filance, F.; Recio, J.; Alvarez-Builla, J.; Burgos, C. Prodrug approach: An overview of recent cases. Eur. J. Med. Chem. 2017, 127, 810–827. [Google Scholar] [CrossRef]
- Huttunen, K.M.; Raunio, H.; Rautio, J. Prodrugs—From Serendipity to Rational Design. Pharm. Rev. 2011, 63, 750–771. [Google Scholar] [CrossRef] [Green Version]
- Serajuddin Abu, T.M. Salt formation to improve drug solubility. Adv. Drug Del. Rev. 2007, 59, 603–616. [Google Scholar] [CrossRef] [PubMed]
- Benes, M.; Pekarek, T.; Beranek, J.; Havlicek, J.; Krejcik, L.; Simek, M.; Tkadlecova, M.; Dolezal, P. Methods for the preparation of amorphous solid dispersions—A comparative study. J. Drug Del. Sci. Tech. 2017, 38, 125–134. [Google Scholar] [CrossRef]
- Newman, A.; Knipp, G.; Zografi, G. Assessing the Performance of Amorphous Solid Dispersions. J. Pharm. Sci. 2012, 101, 1355–1377. [Google Scholar] [CrossRef]
- He, Y.; Ho, C. Amorphous Solid Dispersions: Utilization and Challenges in Drug Discovery and Development. J. Pharm. Sci. 2015, 104, 3237–3258. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Dai, W.-G. Fundamental aspects of solid dispersions technology for poorly soluble drugs. Acta Pharm. Sinica B 2014, 4, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Jermain, S.V.; Brough, C.; Williams, R.O. Amorphous solid dispersions and nanocrystal technologies for poorly water-soluble drug delivery. Int. J. Pharm. 2018, 535, 379–392. [Google Scholar] [CrossRef]
- Vo, C.; Park, C.; Lee, B.-J. Current trends and future perspectives of solid dispersions containing poorly water soluble drugs. Eur. J. Pharm. Biopharm. 2013, 85, 799–813. [Google Scholar] [CrossRef] [PubMed]
- Craig, D. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int. J. Pharm. 2002, 231, 131–144. [Google Scholar] [CrossRef]
- Eloy, J.O.; Marchetti, J.M. Solid dispersions containing ursolic acid in Poloxamer 407 and PEG 6000: A comparative study of Fusion and solvent methods. Powder Tech. 2014, 253, 98–116. [Google Scholar] [CrossRef]
- Altamimi, M.A.; Neau, S.H. Investigation of the in vitro performance difference of drug-Soluplus® and drug-PEG 6000 dispersions when using spray drying or lyophilization. Saudi Pharm. J. 2017, 25, 419–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weuts, I.; Van Dycke, F.; Voorspoels, J.; De Cort, S.; Stokbroekx, S.; Leemans, R.; Brewster, M.E.; Xu, D.; Segmuller, B.; Turner, Y.T.; et al. Physicochemical Properties of the Amorphous Drug, Cast Films, and Spray Dried Powders to Predict Formulation Probability of Success for Solid Dispersions Etravirine. J. Pharm. Sci. 2011, 100, 260–274. [Google Scholar] [CrossRef] [PubMed]
- Milovanovic, S.; Djuris, J.; Dapcevic, A.; Madarevic, D.; Ibric, S.; Zizovic, I. Soluplus®, Eudragit®, HPMC-AS foams and solid dispersions for enhancement of Carvedilol dissolution rate prepared by supercriticial CO2 process. Polym. Test. 2019, 76, 54–64. [Google Scholar] [CrossRef]
- Nuchuchua, O.; Nejadnik, M.R.; Goulooze, S.C.; Ljescovic, N.J.; Every, H.A.; Jiskoot, W. Characterization of drug delivery particles produced by supercritical carbon dioxide technologies. J. Supercrit Fluids 2017, 128, 244–262. [Google Scholar] [CrossRef]
- Abuzar, S.M.; Hyun, S.-M.; Kim, J.-H.; Park, H.J.; Kim, M.-S.; Park, J.-S.; Hwang, S.-J. Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process. Int. J. Pharm. 2018, 532, 1–13. [Google Scholar] [CrossRef]
- Badens, E.; Masmoudi, Y.; Mouahid, A.; Crampon, C. Current situation and perspectives in drug formulation by using supercritical fluid technology. J. Supercrit Fluids 2018, 134, 274–283. [Google Scholar] [CrossRef] [Green Version]
- Vasconcelos, T.; Sarmento, B.; Costa, P. Solid dispersion as strategy to improve oral bioavailability of poor water soluble drugs. Drug Disc. Today 2007, 12, 1068–1074. [Google Scholar] [CrossRef]
- Wei, Q.; Keck, C.; Muller, R. Preparation and tableting of long-term stable amorphous rutin using porous silica. Eur. J. Pharm. Biopharm. 2017, 113, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Krasnyuk, I.I.; Koval’skii, I.V.; Nikulina, O.I.; Belyatskaya, A.V.; Krasnyuk, I.I.; Kharitonov, Y.Y.; Grikh, V.V.; Obidchenko, Y.A.; Vorob’ev, A.N. Preparation and investigation of tabletted medicinal formulations of a solid dispersion of rutin. Pharm. Chem. J. 2015, 49, 481–485. [Google Scholar] [CrossRef]
- Abebe, A.; Akseli, I.; Sprockel, O.; Kottala, N.; Cuitino, A.M. Review of bilayer tablet technology. Int. J. Pharm. 2014, 461, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Wlodarski, K.; Tajber, L.; Sawicki, W. Physicochemical properties of direct compression tablets with spray dried and ball milled solid dispersions of tadalafil in PVP-VA. Eur. J. Pharm. Biopharm. 2016, 109, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Kou, X.; Hou, H.; Huang, Y.; Strong, S.C.; Zhang, G.G.Z.; Sun, C.C. Mechanical Properties and Tableting Behavior of Amorphous Solid Dispersions. J. Pharm. Sci. 2017, 106, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Antosik, A.; Witkowski, S.; Woyna-Orlewicz, K.; Talik, P.; Szafraniec, J.; Wawrzuta, B.; Jachowicz, R. Application of supercritical carbon dioxide to enhance dissolution rate of bicalutamide. Acta Pol. Pharm. 2017, 74, 1231–1238. [Google Scholar]
- Német, Z.; Sztatisz, J.; Demeter, Á. Polymorph transitions of bicalutamide: A remarkable example of mechanical activation. J. Pharm. Sci. 2008, 97, 3222–3232. [Google Scholar] [CrossRef]
- Vega, D.R.; Polla, G.; Martinez, A.; Mendioroz, E.; Reinoso, M. Conformational polymorphism in bicalutamide. Int. J. Pharm. 2007, 328, 112–118. [Google Scholar] [CrossRef]
- Szafraniec, J.; Antosik, A.; Knapik-Kowalczuk, J.; Kurek, M.; Syrek, K.; Chmiel, K.; Paluch, M.; Jachowicz, R. Planetary ball milling and supercritical fluid technology as a way to enhance dissolution of bicalutamide. Int. J. Pharm. 2017, 533, 470–479. [Google Scholar] [CrossRef]
- Szafraniec, J.; Antosik, A.; Knapik-Kowalczuk, J.; Gawlak, K.; Kurek, M.; Szlęk, J.; Jamróz, W.; Paluch, M.; Jachowicz, R. Molecular Disorder of Bicalutamide-Amorphous Solid Dispersions Obtained by Solvent Methods. Pharmaceutics 2018, 10, 194. [Google Scholar] [CrossRef] [Green Version]
- Szafraniec-Szczęsny, J.; Antosik-Rogóż, A.; Knapik-Kowalczuk, J.; Kurek, M.; Szefer, E.; Gawlak, K.; Chmiel, K.; Peralta, S.; Niwiński, K.; Pielichowski, K.; et al. Compression-Induced Phase Transition of Bicalutamide. Pharmaceutics 2020, 12, 438. [Google Scholar] [CrossRef] [PubMed]
- Bley, H.; Fussnegger, B.; Bodmeier, R. Characterization and stability of solid dispersions based on PEG/polimer blends. Int. J. Pharm. 2010, 390, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Betageri, G.V.; Makarla, K.R. Enhancement of dissolution of glyburide by solid dispersion and lyophilization techcniques. Int. J. Pharm. 1995, 126, 155–160. [Google Scholar] [CrossRef]
- Chutimaworapan, S.; Ritthidej, G.C.; Yonemochi, E.; Oguchi, T.; Yamamoto, K. Effect of Water-Soluble Carriers on Dissolution Characteristics of Nifedipine Solid Dispersions. Drug Dev. Ind. Pharm. 2000, 26, 1141–1150. [Google Scholar] [CrossRef]
- Sancheti, P.P.; Vyas, V.M.; Shah, M.; Karekar, P. Development and characterization of bicalutamide poloxamer F68 solid dispersion system. Pharmazie 2008, 8, 571–575. [Google Scholar]
- Szafraniec, J.; Antosik, A.; Knapik-Kowalczuk, J.; Chmiel, K.; Kurek, M.; Gawlak, K.; Odrobińska, J.; Paluch, M.; Jachowicz, R. The Self-Assembly Phenomenon of Poloxamers and Its Effect on the Dissolution of a Poorly Soluble Drug from Solid Dispersions Obtained by Solvent Methods. Parmaceutics 2019, 11, 130. [Google Scholar] [CrossRef] [Green Version]
- Szczurek, J.; Rams-Baron, M.; Knapik-Kowalczuk, J.; Antosik, A.; Szafraniec, J.; Jamróz, W.; Dulski, M.; Jachowicz, R.; Paluch, M. Molecular Dynamics, Recrystallization Behavior, and Water Solubility of the Amorphous Anticancer Agent Bicalutamide and Its Polyvinylpyrrolidone Mixtures. Mol. Pharm. 2017, 14, 1071–1081. [Google Scholar] [CrossRef]
- Kaul, G.; Huang, J.; Chatlapalli, R.; Ghosh, K.; Nagi, A. Quality-by-Design Case Study: Investigation of the Role of Poloxamer in Immediate-Release Tablets by Experimental Design and Multivariate Data Analysis. AAPS Pharm. Sci. Tech. 2011, 12, 1064–1076. [Google Scholar] [CrossRef] [Green Version]
- D’souza, A.A.; Shegokar, R. Polyethylene glycol (PEG): A versatile polymer for pharmaceutical applications. Expert Opin. Drug Del. 2016, 13, 1257–1275. [Google Scholar] [CrossRef]
- Szafraniec, J.; Antosik, A.; Knapik-Kowalczuk, J.; Chmiel, K.; Kurek, M.; Gawlak, K.; Paluch, M.; Jachowicz, R. Enhanced Dissolution of Solid Dispersions Containing Bicalutamide Subjected to Mechanical Stress. Int. J. Pharm. 2018, 542, 18–26. [Google Scholar] [CrossRef] [PubMed]
Substance | D50 (µm) | Span |
---|---|---|
Bicalutamide | 81.7 | 1.70 |
Macrogol 6000 | 113.0 | 3.18 |
Poloxamer® 407 | 180.0 | 2.02 |
BCL-PEG6000 | 1120 | 2.01 |
BCL-PLX407 | 356 | 2.90 |
Substance | Tablets | |||||
---|---|---|---|---|---|---|
Raw BCL | Solid Dispersion | |||||
BCL-PEG6000 | BCL-PLX407 | |||||
Content of Compounds in One Tablet | ||||||
mg | % | mg | % | mg | % | |
BCL | 50.00 | 41.67 | - | - | - | - |
BCL-Polymer (SD) | - | - | 100.00 | 58.82 | 100.00 | 58.82 |
Cellulose | - | - | - | 37.65 | 64.00 | 37.65 |
Microcrystalline | 64.00 | 53.33 | 64.00 | |||
Sodium starch glycolate | 4.80 | 4.00 | 4.80 | 2.82 | 4.80 | 2.82 |
Magnesium stearate | 1.20 | 1.00 | 1.20 | 0.71 | 1.20 | 0.71 |
Parameter | Mass (mg) | Thickness (mm) | Hardness (kp) | Friability (%) | Disintegration Time (min:s) | Contact Angle (°) | |
---|---|---|---|---|---|---|---|
System | |||||||
SD BCL-PEG6000 | 169.3 ± 7.0 | 3.60 ± 0.04 | 2.87 ± 0.63 | 0.0 | 4:23 | 50.8 | |
SD BCL-PLX407 | 168.1 ± 5.8 | 3.43 ± 0.04 | 2.28 ± 0.64 | 0.4 | 24:22 | 55.8 | |
Raw BCL | 121.5 ± 3.6 | 2.08 ± 0.04 | 1.97 ± 0.25 | 0.6 | 00:31 | 85.4 |
Parameter | Mass (mg) | Hardness (kp) | Thickness (mm) | Disintegration Time (min:s) | Contact Angle (°) | |
---|---|---|---|---|---|---|
System | ||||||
25 °C, 60% RH | ||||||
SD BCL-PEG | 168.3 ± 3.5 | 2.47 ± 0.15 | 3.66 ± 0.01 | 04:57 | 48.9 | |
SD BCL-PLX | 174.5 ± 5.1 | 2.63 ± 0.51 | 3.53 ± 0.05 | 27:10 | 58.9 | |
40 °C, 75% RH | ||||||
SD BCL-PEG | 177.0 ± 4.4 | 1.80 ± 0.36 | 3.73 ± 0.08 | 04:59 | 59.8 | |
SD BCL-PLX | 175.9 ± 5.5 | 1.25 ± 0.07 | 3.76 ± 0.06 | 14:39 | 53.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antosik-Rogóż, A.; Szafraniec-Szczęsny, J.; Chmiel, K.; Knapik-Kowalczuk, J.; Kurek, M.; Gawlak, K.; Danesi, V.P.; Paluch, M.; Jachowicz, R. How Does the CO2 in Supercritical State Affect the Properties of Drug-Polymer Systems, Dissolution Performance and Characteristics of Tablets Containing Bicalutamide? Materials 2020, 13, 2848. https://doi.org/10.3390/ma13122848
Antosik-Rogóż A, Szafraniec-Szczęsny J, Chmiel K, Knapik-Kowalczuk J, Kurek M, Gawlak K, Danesi VP, Paluch M, Jachowicz R. How Does the CO2 in Supercritical State Affect the Properties of Drug-Polymer Systems, Dissolution Performance and Characteristics of Tablets Containing Bicalutamide? Materials. 2020; 13(12):2848. https://doi.org/10.3390/ma13122848
Chicago/Turabian StyleAntosik-Rogóż, Agata, Joanna Szafraniec-Szczęsny, Krzysztof Chmiel, Justyna Knapik-Kowalczuk, Mateusz Kurek, Karolina Gawlak, Vittorio P. Danesi, Marian Paluch, and Renata Jachowicz. 2020. "How Does the CO2 in Supercritical State Affect the Properties of Drug-Polymer Systems, Dissolution Performance and Characteristics of Tablets Containing Bicalutamide?" Materials 13, no. 12: 2848. https://doi.org/10.3390/ma13122848
APA StyleAntosik-Rogóż, A., Szafraniec-Szczęsny, J., Chmiel, K., Knapik-Kowalczuk, J., Kurek, M., Gawlak, K., Danesi, V. P., Paluch, M., & Jachowicz, R. (2020). How Does the CO2 in Supercritical State Affect the Properties of Drug-Polymer Systems, Dissolution Performance and Characteristics of Tablets Containing Bicalutamide? Materials, 13(12), 2848. https://doi.org/10.3390/ma13122848