Microstructure and High-Temperature Wear Performance of FeCr Matrix Self-Lubricating Composites from Room Temperature to 800 °C
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Specimens
2.2. Tribological Tests
3. Results and Discussion
3.1. Microstructure and Physical Properties of Composites
3.2. High-Temperature Tribological Properties
3.3. Analysis of Worn Surfaces
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Varga, M.; Leroch, S.; Rojacz, H.; Ripoll, M.R. Study of wear mechanisms at high temperature scratch testing. Wear 2017, 388, 112–118. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhou, C.; Chen, S.; Wang, R.Y. Effects of temperature and pressure on stress corrosion cracking behavior of 310S stainless steel in chloride solution. Chin. J. Mech. Eng. 2016, 30, 200–206. [Google Scholar] [CrossRef]
- Hou, G.L.; An, Y.L.; Zhao, X.Q.; Zhou, H.D.; Chen, J.M. Effect of alumina dispersion on oxidation behavior as well as friction and wear behavior of HVOF-sprayed CoCrAlYTaCSi coating at elevated temperature up to 1000 °C. Acta Mater. 2015, 95, 164–175. [Google Scholar] [CrossRef]
- Gonzalez, J.; Peral, L.B.; Zafra, A.; Fernandez-Pariente, I. Influence of shot peening treatment in erosion wear behavior of high chromium white cast iron. Metals 2019, 9, 933. [Google Scholar] [CrossRef] [Green Version]
- Qiu, B.; Xing, S.M.; Dong, Q. Green preparation and dry sliding wear properties of a Macro-ZTA/Fe composite produced by a two-step method. Metals 2019, 9, 986. [Google Scholar] [CrossRef] [Green Version]
- Erdoğan, A. Investigation of high temperature dry sliding behavior of borided H13 hot work tool steel with nanoboron powder. Surf. Coat. Technol. 2019, 357, 886–895. [Google Scholar] [CrossRef]
- Hernandez, S.; Hardell, J.; Courbon, C.; Winkelmann, H.; Prakash, B. High temperature friction and wear mechani sm map for tool steel and boron steel tribopair. Tribol.-Mater. Surf. Interfaces 2014, 8, 74–78. [Google Scholar] [CrossRef]
- Yoo, J.W.; Lee, S.H.; Yoon, C.S.; Kim, S.J. The effect of boron on the wear behavior of iron-based hardfacing alloys for nuclear power plants valves. J. Nucl. Mater. 2006, 352, 90–96. [Google Scholar] [CrossRef]
- Katsicha, C.; Badisch, E.; Roy, M.; Heath, G.R.; Franek, F. Erosive wear of hardfaced Fe–Cr–C alloys at elevated temperature. Wear 2009, 267, 1856–1864. [Google Scholar] [CrossRef]
- Koga, G.Y.; Schulz, S.; Savoie, A.R.C.; Nascimento, Y.; Drolet, C.; Bolfarini, C.S. Microstructure and wear behavior of Fe-based amorphous HVOF coatings produced from commercial precursors. Surf. Coat. Technol. 2017, 309, 938–944. [Google Scholar] [CrossRef]
- Kim, J.K.; Kim, G.M.; Kimv, S.J. The effect of manganese on the strain-induced martensitic transformation and high temperature wear resistance of Fe-20Cr-1C-1Si hardfacing alloy. J. Nucl. Mater. 2001, 289, 263–269. [Google Scholar] [CrossRef]
- Aghili, S.E.; Enayati, M.H.; Karimzadeh, F. Synthesis of (Fe,Cr)3Al–Al2O3 nanocomposite through mechanochemical combustion reaction induced by ball milling of Cr, Al and Fe2O3 powders. Adv. Powder Technol. 2014, 25, 408–414. [Google Scholar] [CrossRef]
- Rizaneh, S.; Borhani, G.H.; Tavoosi, M. Synthesis and characterization of Al (Al2O3–TiB2/Fe) nanocomposite by means of mechanical alloying and hot extrusion processes. Adv. Powder Technol. 2014, 25, 1693–1698. [Google Scholar] [CrossRef]
- Modi, O.P.; Prasad, B.K.; Jha, A.K.; Deshmukh, V.P.; Shah, A.K. Effects of Material Composition and Microstructural Features on Dry Sliding Wear Behaviour of Fe–TiC Composite and a Cobalt-Based Stellite. Tribol. Lett. 2004, 17, 129–138. [Google Scholar] [CrossRef]
- Zhang, X.H.; Ma, J.Q.; Fu, L.C.; Zhu, S.Y.; Li, F.; Yang, J.; Liu, W.M. High temperature wear resistance of Fe–28Al–5Cr alloy and its composites reinforced by TiC. Tribol. Int. 2013, 61, 48–55. [Google Scholar] [CrossRef]
- Chen, J.M.; Hou, G.L.; Chen, J.; An, Y.L.; Zhou, H.D.; Zhao, X.Q.; Yang, J. Composition versus friction and wear behavior of plasma sprayed WC–(W,Cr)2C–Ni/Ag/BaF2–CaF2 self-lubricating composite coatings for use up to 600 °C. Appl. Surf. Sci. 2012, 261, 584–592. [Google Scholar] [CrossRef]
- Essa, F.A.; Zhang, Q.X.; Huang, X.J. Investigation of the effects of mixtures of WS2 and ZnO solid lubricants on the sliding friction and wear of M50 steel against silicon nitride at elevated temperatures. Wear 2017, 374–375, 128–141. [Google Scholar] [CrossRef]
- Serra, E.C.; Soares, V.F.D.; Fernandez, D.A.R.; Hübler, R.; Juste, K.R.C.; Lima, C.L.; Tentardini, E.K. Influence of WS2 content on high temperature wear performance of magnetron sputtered TiN-WSx thin films. Ceram. Int. 2019, 45, 19918–19924. [Google Scholar] [CrossRef]
- Song, J.P.; Valefi, M.; Rooij, M.; Schipper, D.J.; Winnubs, L. The effect of an alumina counterface on friction reduction of CuO/3Y-TZP composite at room temperature. Wear 2012, 274–275, 75–83. [Google Scholar] [CrossRef]
- Zhang, X.H.; Cheng, J.; Niu, M.Y.; Tan, H.; Liu, W.M.; Yang, J. Microstructure and high temperature tribological behavior of Fe3Al–Ba0.25Sr0.75SO4 self-lubricating composites. Tribol. Int. 2016, 101, 81–87. [Google Scholar] [CrossRef]
- Li, Y.F.; Ouyang, J.H.; Sasaki, S. Tribological properties of spark-plasma-sintered ZrO2(Y2O3)–Al2O3–BaxSr1−xSO4 (x = 0.25, 0.5, 0.75) composites at elevated temperature. Tribol. Lett. 2012, 45, 291–300. [Google Scholar] [CrossRef]
- Cui, G.J.; Lu, L.; Wu, J.; Liu, Y.P.; Gao, G.J. Microstructure and tribological properties of Fe–Cr matrix self-lubricating composites against Si3N4 at high temperature. J. Alloys Compd. 2014, 611, 235–242. [Google Scholar] [CrossRef]
- Cui, G.J.; Kou, Z.M. The effect of boron on mechanical behavior and microstructure for Fe–Cr matrix alloy prepared by P/M. J. Alloys Compd. 2014, 586, 699–702. [Google Scholar] [CrossRef]
- Liu, F.; Zhou, Y.; Zhang, X.Y.; Cao, W.F.; Jia, J.H. Tribological properties of NiCr–ZrO2(Y2O3)–SrSO4 composites at elevated temperatures. Ceram. Int. 2016, 42, 12981–12987. [Google Scholar] [CrossRef]
- Lou, M.; Alpas, A.T. High temperature wear mechanisms in thermally oxidized titanium alloys for engine valve applications. Wear 2019, 426–427, 443–453. [Google Scholar] [CrossRef]
- Tripathi, K.; Gyawali, G.; Lee, S.W. Graphene coating via chemical vapor deposition for improving friction and wear of gray cast iron at interfaces. ACS Appl. Mater. Interfaces 2017, 9, 32336–32351. [Google Scholar] [CrossRef]
- Erdemir, A. A crystal-chemical approach to lubrication by solid oxides. Tribol. Lett. 2000, 8, 97–102. [Google Scholar] [CrossRef]
- Li, B.; Gao, Y.M.; Han, M.M.; Guo, H.J.; Wang, W.J.; Jia, J.H. Microstructure and tribological properties of NiCrAlY-Mo-Ag composite by vacuum hot-press sintering. Vacuum 2017, 143, 1–6. [Google Scholar] [CrossRef]
- Li, F.; Cheng, J.; Zhu, S.Y.; Hao, J.Y.; Yang, J.; Liu, W.M. Microstructure and mechanical properties of Ni-based high temperature solid-lubricating composites. Mater. Sci. Eng. A 2017, 682, 475–481. [Google Scholar] [CrossRef]
- Valefi, M.; Rooi, M.j.; Schipper, D.J.; Winnubst, L. Effect of temperature on friction and wear behaviour of CuO–zirconia composites. J. Eur. Ceram. Soc. 2012, 32, 2235–2242. [Google Scholar] [CrossRef]
- Radu, I.; Li, D.Y.; Llewellyn, R. Tribological behavior of Stellite 21 modified with yttrium. Wear 2004, 257, 1154–1166. [Google Scholar] [CrossRef]
Specimens | Fe-21Cr | Mo | Ag | CuO |
---|---|---|---|---|
FC | 100 | 0 | 0 | 0 |
FU | 90 | 0 | 0 | 10 |
FM | 76 | 14 | 0 | 10 |
FAC10 | 65.5 | 14 | 10.5 | 10 |
FAC6 | 69.5 | 14 | 10.5 | 6 |
FAC14 | 61.5 | 14 | 10.5 | 14 |
Specimens | Vickers Hardness | Density (g/cm3) | Porosity (%) |
---|---|---|---|
FC | 176 | 7.69 | 0.43 |
FU | 192 | 7.44 | 1.91 |
FM | 445 | 7.68 | 1.76 |
FAC10 | 403 | 7.94 | 1.37 |
FAC6 | 386 | 8.04 | 0.86 |
FAC14 | 428 | 7.83 | 1.94 |
Area | Element (wt.%) | |||||||
---|---|---|---|---|---|---|---|---|
N | O | Si | Cr | Fe | Cu | Mo | Ag | |
a | 0.31 | 24.35 | 0.78 | 9.17 | 21.11 | 13.35 | 9.42 | 21.51 |
b | 0.28 | 25.31 | 0.64 | 9.84 | 22.63 | 10.51 | 10.42 | 20.37 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, G.; Liu, Y.; Gao, G.; Liu, H.; Kou, Z. Microstructure and High-Temperature Wear Performance of FeCr Matrix Self-Lubricating Composites from Room Temperature to 800 °C. Materials 2020, 13, 51. https://doi.org/10.3390/ma13010051
Cui G, Liu Y, Gao G, Liu H, Kou Z. Microstructure and High-Temperature Wear Performance of FeCr Matrix Self-Lubricating Composites from Room Temperature to 800 °C. Materials. 2020; 13(1):51. https://doi.org/10.3390/ma13010051
Chicago/Turabian StyleCui, Gongjun, Yanping Liu, Guijun Gao, Huiqiang Liu, and Ziming Kou. 2020. "Microstructure and High-Temperature Wear Performance of FeCr Matrix Self-Lubricating Composites from Room Temperature to 800 °C" Materials 13, no. 1: 51. https://doi.org/10.3390/ma13010051
APA StyleCui, G., Liu, Y., Gao, G., Liu, H., & Kou, Z. (2020). Microstructure and High-Temperature Wear Performance of FeCr Matrix Self-Lubricating Composites from Room Temperature to 800 °C. Materials, 13(1), 51. https://doi.org/10.3390/ma13010051