The Influencing Factor of MgAl2O4 on Heterogeneous Nucleation and Grain Refinement in Al Alloy Melts
Abstract
:1. Introduction
2. Interactions between Melt and MgAl2O4 Particles
2.1. In Situ MgAl2O4 Particles
2.2. Exogenous MgAl2O4
3. Conclusions
- The existence of in situ MgAl2O4 means a potent heterogeneous core, and it is the premise for heterogeneous nucleation and grain refinement in Al and Al–Mg alloys. Physical force highly enhances heterogeneous nucleation and grain refinement through tuning of the wetting, size, and distribution of MgAl2O4 particles. The content of MgAl2O4 is a crucial factor in grain refinement. The heterogeneous nucleation of MgAl2O4 plays a vital role in grain size reduction when the content of MgAl2O4 arrives at a critical value. The optimal addition of in situ MgAl2O4 has the following conditions: a uniform distribution, hundreds of nanoscale-sized to several microscale-sized particles, and a mass percent of about 2 wt %.
- MgAl2O4 reactions (from Al and MgO substrates) are retained outside the Al melt during the nucleation process and can act as potent nucleation substrates for Al alloys. Different heating temperatures control the extent of the reaction of the Al and MgO and lead to different morphologies and thicknesses of the MgAl2O4 product.
- The exogenous MgAl2O4 single crystal is also a potent heterogeneous nucleation substrate for Al and Al–Mg alloys under a casting temperature or a high heating temperature with a short holding time. The cube-on-cube OR of {200} <001>Al||{400} <001>MgAl2O4and the same or integral multiple-crystal-plane spacing indicate that nucleated-phase Al fits the substrate with limited lattice distortion for small lattice misfits between Al and MgAl2O4.
Author Contributions
Funding
Conflicts of Interest
References
- Wang, Y.; Li, H.T.; Fan, Z. Oxidation of Aluminium Alloy Melts and Inoculation by Oxide Particles. Trans. Indian Inst. Met. 2012, 65, 653–661. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.T.; Fan, Z.; Scamans, G. Characterisation of Oxide Films in Al–Mg Alloy Melts. Mater. Sci. Forum 2013, 765, 220–224. [Google Scholar] [CrossRef]
- Goldstein, V.Y.; Novikov, V.Y. Heterogeneous nucleation in crystallization: Impact of impurities and local melt inhomogeneity. Mater. Lett. 2018, 229, 164–166. [Google Scholar] [CrossRef]
- Turnbull, D.; Vonnegut, B. Nucleation catalysis. Ind. Eng. Chem. 1952, 44, 1292–1298. [Google Scholar] [CrossRef]
- Bramfitt, B.L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron. Metall. Trans. 1970, 1, 1987–1995. [Google Scholar] [CrossRef]
- Sreekumar, V.M.; Babu, N.H.; Eskin, D.G.; Fan, Z. Structure-property analysis of in-situ Al–MgAl2O4 metal matrix composites synthesized using ultrasonic cavitation. Mater. Sci. Eng. A 2015, 628, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Raghu, R.; Nampoothiri, J.; Kumar, T.S. In-situ generation of MgAl2O4 particles in Al–Mg alloy using H3BO3 addition for grain refinement under ultrasonic treatment. Measurement 2018, 129, 389–394. [Google Scholar] [CrossRef]
- Zeng, T.; Zhou, Y.J. Effects of Ultrasonic Introduced by L-Shaped Ceramic Sonotrodes on Microstructure and Macro-Segregation of 15t AA2219 Aluminum Alloy Ingot. Materials 2019, 12, 3162. [Google Scholar] [CrossRef] [Green Version]
- Pericleous, K.; Bojarevics, V.; Djambazov, G.; Dybalska, A.; Griffiths, W.D.; Tonry, C. Contactless Ultrasonic Cavitation in Alloy Melts. Materials 2019, 12, 3610. [Google Scholar] [CrossRef] [Green Version]
- Li, H.T.; Wang, Y.; Fan, Z. Mechanisms of enhanced heterogeneous nucleation during solidification in binary Al–Mg alloys. Acta Mater. 2012, 60, 1528–1537. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H. Formation of endogenous MgO and MgAl2O4 particles and their possibility of acting as substrate for heterogeneous nucleation of aluminum grains. Surf. Interface Anal. 2015, 47, 429–438. [Google Scholar] [CrossRef] [Green Version]
- Harini, R.S.; Nampoothiri, J.; Nagasivamuni, B.; Raj, B.; Ravi, K.R. Ultrasonic assisted grain refinement of Al–Mg alloy using in-situ MgAl2O4 particles. Mater. Lett. 2015, 145, 328–331. [Google Scholar] [CrossRef]
- Harini, R.S.; Raj, B.; Ravi, K.R. Synthesis of Al- MgAl2O4 Master Alloy and its Grain Refinement Studies in Pure Aluminium. Trans. Indian Inst. Met. 2015, 68, 1059–1063. [Google Scholar] [CrossRef]
- Haghayeghi, R.; Qian, M. Initial crystallisation or nucleation in a liquid aluminium alloy containing spinel seeds. Mater. Lett. 2017, 196, 358–360. [Google Scholar] [CrossRef]
- Yang, L.; Xia, M.; Babu, N.H.; Li, J.G. Formation of MgAl2O4 at Al/MgO interface. Mater. Trans. 2015, 56, 277–280. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Wang, D.; Zhang, Y.; Sheng, C.; Dargusch, M.; Wang, G.; John, D.S.; Zhai, Q. Heterogeneous nucleation of pure Al on MgO single crystal substrate accompanied by a MgAl2O4 buffer layer. J. Alloys Compd. 2018, 753, 543–550. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Wang, L.; Xia, M.; Babu, N.H.; Li, J.G. Misfit paradox on nucleation potency of MgO and MgAl2O4 for Al. Mater. Charact. 2016, 119, 92–98. [Google Scholar] [CrossRef]
- Raghu, R.; Nampoothiri, J.; Kumar, T.S.; Subramanian, R. Microstructure and Mechanical Properties of Al/ MgAl2O4 In Situ Composites Synthesized by Ultrasonic Cavitation. Trans. Indian Inst. Met. 2019, 72, 1013–1021. [Google Scholar] [CrossRef]
- Horvitz, D.; Gotman, I.; Gutmanas, E.Y.; Claussen, N. In Situ Processing of Dense Al2O3-Ti Aluminide Interpenetrating Phase Composites. J. Eur. Ceram. Soc. 2002, 22, 947–954. [Google Scholar] [CrossRef]
- Yu, Z.; Zhao, N.; Liu, E.; Shi, C.; Du, X.; Wang, J. Fabrication of aluminum matrix composites with enhanced mechanical properties reinforced by in situ generated MgAl2O4 whiskers. Compos. Part A 2012, 43, 631–634. [Google Scholar] [CrossRef]
- Suslick, K.S.; Price, G.J. Applications of ultrasound to materials chemistry. Annu. Rev. Mater. Sci. 1999, 29, 295–326. [Google Scholar] [CrossRef] [Green Version]
- Nowak, R.; Sobczak, N.; Sienicki, E.; Morgiel, J. Structural characterization of reaction product region in Al/MgO and Al/MgAl2O4 systems. Solid State Phenom. 2011, 172–174, 1273–1278. [Google Scholar] [CrossRef]
- Morgiel, J.; Sobczak, N.; Pomorska, M.; Nowak, R. First stage of reaction of molten Al with MgO substrate. Mater. Charact. 2015, 103, 133–139. [Google Scholar] [CrossRef]
- Fan, Z.; Wang, Y.; Zhang, Y.; Qin, T.; Zhou, X.R.; Thompson, G.E.; Pennycook, T.; Hashimoto, T. Grain refining mechanism in the Al/Al-Ti-B system. Acta Mater. 2015, 84, 292–304. [Google Scholar] [CrossRef]
- Wang, L.; Yang, L.; Zhang, D.; Xia, M.; Wang, Y.; Li, J.G. The Role of Lattice Misfit on heterogeneous nucleation of pure aluminum. Metall. Mater. Trans. A 2016, 47, 5012–5022. [Google Scholar] [CrossRef]
Alloys and Purity | wt % and Compositions of Al–MgAl2O4 Master | Master Adding Modes | wt % of MgAl2O4 | T (melt, UT) and t (Master) | t (UT) | Mean Grain Size of MgAl2O4 in μm | Refinement Degree of Alloy Grain Size | Mold and Size in mm | Melting |
---|---|---|---|---|---|---|---|---|---|
Al; C-grade | 3 wt % Al– 2Mg–5SiO2 with UT [13] | vortex | 0.15 | 720 °C; 20 min | 0 | 0.64 | 2–3-fold reduction | cast iron mold; Φ 50 × 100; preheated at 500 °C [13]; 300 °C [12] | pit type resistance furnace; clay graphite crucible |
30 s | 11–12-fold reduction | ||||||||
Al–1Mg; C-grade | Al–1Mg– 0.1SiO2 [12] | vortex | 0.055 | 750 °C; 30 min | 0 | – | ~2-fold reduction | ||
0.085 | 5 min | ~0.62 | 7–8-fold reduction | ||||||
Al–4Mg; C-grade | Al–1Mg– 2H3BO3 [7] | simple | 0 | 750 °C; 15 min | 5 min | none | ~1.1-fold reduction | Φ 20 × 80; preheated | resistance furnace; graphite crucible |
0.58 | 0 | ~2 | 3–4-fold reduction; | ||||||
5 min | ~0.70 | 7–8-fold reduction | |||||||
Al–4Mg; C-grade | Al–1Mg– 5.2H3BO3 [18] | simple | 3 | 750 °C; 15 min | 0 | ~3 | 3–4-fold reduction | cast iron mold; Φ 20 × 120; preheated | resistance furnace; graphite crucible |
5 min | ~0.35 | 7–8-fold reduction |
Al/ MgAl2O4 | f (%) | ||
---|---|---|---|
{400} | {040} | ||
{200} | 0.20 | ||
2d-{20} | 0.20 | ||
{020} | 0.20 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Wang, L.; Yang, M. The Influencing Factor of MgAl2O4 on Heterogeneous Nucleation and Grain Refinement in Al Alloy Melts. Materials 2020, 13, 231. https://doi.org/10.3390/ma13010231
Yang L, Wang L, Yang M. The Influencing Factor of MgAl2O4 on Heterogeneous Nucleation and Grain Refinement in Al Alloy Melts. Materials. 2020; 13(1):231. https://doi.org/10.3390/ma13010231
Chicago/Turabian StyleYang, Lin, Lu Wang, and Mei Yang. 2020. "The Influencing Factor of MgAl2O4 on Heterogeneous Nucleation and Grain Refinement in Al Alloy Melts" Materials 13, no. 1: 231. https://doi.org/10.3390/ma13010231
APA StyleYang, L., Wang, L., & Yang, M. (2020). The Influencing Factor of MgAl2O4 on Heterogeneous Nucleation and Grain Refinement in Al Alloy Melts. Materials, 13(1), 231. https://doi.org/10.3390/ma13010231