Microstructure Evolution and Mechanical Properties of PM-Ti43Al9V0.3Y Alloy
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Fabrication of Powder
2.2. Hot Isostatic Pressing
2.3. Microstructural Characterizations
2.4. Mechanical Property Tests
3. Results and Discussion
3.1. Characterizations of Powder
3.2. As-HIPed Microstructures
3.3. EBSD Investigation
3.4. Mechanical Behaviors
3.5. Study of the Fracture Surfaces
4. Conclusions
- The TiAl powder prepared by gas atomization has high sphericity. The small powder is smooth and the large one exhibits a dendritic appearance. Although the alloy contains high β stabilizer V, the powder mainly consists of α2 due to the fast cooling rate.
- The phase composition of as-HIPed TiAl and TiAl powder varies greatly. The microstructural evolution is as follows: α2 + trace B2 → γ + B2 from powder to billet. The microstructure is fine and uniform and the grain diameter is about 7 μm. Many γ phases and fine grain are beneficial to the plasticity of the TiAl.
- TiAl is mainly deformed when the grain boundary slips below 700 °C. When the temperature reaches 750 °C, both TiAl grains and grain boundaries start to contribute to deformation. The hard-to-soft transition temperature inside the grain is between 700 °C and 750 °C. It is the reason that the plasticity of TiAl alloy is greatly improved between 700 °C and 750 °C.
- The YS and UTS of the as-HIPed TiAl at room temperature are 669 MPa and 793 MPa, respectively. The plastic elongation to fracture is 1%. At 700 °C, the YS and UTS still reach 589 MPa and 664 MPa, respectively. Fine grain and submicron Y2O3 precipitates enhance the room-temperature and high-temperature strength and plasticity.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Availability Statement
References
- Dong, S.L.; Chen, R.R.; Guo, J.J.; Ding, H.S.; Su, Y.Q.; Fu, H.Z. Microstructure and room temperature tensile property of as-cast Ti44Al6Nb1.0Cr2.0V alloy. Trans. Nonferrous Met. Soc. China 2015, 25, 1097–1105. [Google Scholar] [CrossRef]
- Shi, C.; Lu, Z.; Zhang, K.; Deng, L.; Wang, C. Microstructure evolution and mechanical properties of γ-TiAl honeycomb structure fabricated by isothermal forging and pulse current assisted diffusion bonding. Intermetallics 2018, 99, 59–68. [Google Scholar] [CrossRef]
- Clemens, H.; Mayer, S. Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Adv. Eng. Mater. 2013, 15, 191–215. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, R.; Yang, Y.; Guo, J.; Su, Y.; Ding, H.; Fu, H. Effects of V and B, Y additions on the microstructure and creep behaviour of high-Nb TiAl alloys. J. Alloys Compd. 2018, 747, 640–647. [Google Scholar] [CrossRef]
- Ping-Ping, J. High-temperature Antioxidation of TiAl-Nb Based Alloys. Surf. Technol. 2018, 47, 224–230. [Google Scholar]
- Fan, J.; Liang, L.; Liu, Z.; Li, Y.; Li, Y.; Gao, H.; Wu, S.; Wang, Y.; Wang, X. Recent research and development of mould materials for casting TiAl alloys. Mater. Sci. Technol. 2019, 35, 891–899. [Google Scholar] [CrossRef]
- Microstructure stability and micro-mechanical behavior of as-cast gamma-TiAl alloy during high-temperature low cycle fatigue. Acta Mater. 2018, 145, 504–515. [CrossRef]
- Liu, C.T.; Maziasz, P.J.; Clemens, D.R.; Kim, Y.W.; Wagner, R.; Yamaguchi, M. (Eds.) Gamma Titanium Aluminides; TMS: Warrendale, PA, USA, 1995; p. 679. [Google Scholar]
- Gerling, R.; Bartels, A.; Clemens, H.; Kestler, H.; Schimansky, F.P. Structural characterization and tensile properties of a high niobium containing gamma TiAl sheet obtained by powder metallurgical processing. Intermetallics 2004, 12, 275–280. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, X.; Liu, B.; He, W.; Li, J.; Gan, Z.; He, Y. Investigations on processing powder metallurgical high-Nb TiAl alloy sheets. Intermetallics 2014, 55, 80–89. [Google Scholar] [CrossRef]
- Kawabata, T.; Tadano, M.; Izumi, O. Effect of purity and second phase on ductility of TiAl. Scripta Metallurgica. Scr. Metall. 1988, 22, 1725–1730. [Google Scholar] [CrossRef]
- Du, Z.; Zhang, K.; Lu, Z.; Jiang, S. Microstructure and mechanical properties of vacuum diffusion bonding joints for γ-TiAl based alloy. Vacuum 2018, 150, 96–104. [Google Scholar] [CrossRef]
- Mathabathe, M.N.; Bolokang, A.S.; Govender, G.; Mostert, R.J.; Siyasiya, C.W. The vacuum melted γ-TiAl (Nb, Cr, Si)-doped alloys and their cyclic oxidation properties. Vacuum 2018, 154, 82–89. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.K. Microstructural refinement and improvement of mechanical properties and oxidation resistance in EPM TiAl-based intermetallics with yttrium addition. Acta Mater. 2002, 50, 1479–1493. [Google Scholar]
- Chen, Y.Y.; Li, B.H.; Kong, F.T. Microstructural refinement and mechanical properties of Y-bearing TiAl alloys. J. Alloys Compd. 2008, 457, 265–269. [Google Scholar] [CrossRef]
- Gourdet, S.; Montheillet, F. An experimental study of the recrystallization mechanism during hot deformation of aluminium. Mater. Sci. Eng. A 2000, 283, 274–288. [Google Scholar] [CrossRef]
- Trivedi, P.B.; Patankar, S.N.; Froes, F.S.; Baburaj, E.G.; Genç, A.; Ovecoglu, L. Grainsize control in Ti-48Al-2Cr-2Nb with yttrium additions. Metall. Mater. Trans. A 2002, 33, 2729–2736. [Google Scholar] [CrossRef]
- Criss, J.W.; Birks, L.S. Calibration of chemical element EDS. In The Electron Microprobe; McKinley, T.D., Heinrich, K.F.J., Wittry, D.B., Eds.; Wiley: New York, NY, USA, 1966; p. 217. [Google Scholar]
- Appel, F.; Oehring, M.; Paul, J.D.H. Nano-scale design of TiAl alloys based on β phase decomposition. Adv. Eng. Mater. 2006, 8, 371–376. [Google Scholar] [CrossRef]
- Takeyama, M.; Kobayashi, S. Physical metallurgy for wrought gamma titanium aluminides: Microstructure control through phase transformations. Intermetallics 2005, 13, 993–999. [Google Scholar] [CrossRef]
- Su, Y.; Kong, F.; Chen, Y.; Gao, N.; Zhang, D. Microstructure and mechanical properties of large size Ti-43Al-9V-0.2Y alloy pancake produced by pack-forging. Intermetallics 2013, 34, 29–34. [Google Scholar] [CrossRef]
- Ke, Y.; Duan, H.; Sun, Y. Effect of yttrium and erbium on the microstructure and mechanical properties of Ti–Al–Nb alloys. Mater. Sci. Eng. A 2010, 528, 220–225. [Google Scholar] [CrossRef]
- Kong, F.T.; Chen, Y.Y.; Tian, J. Effect of Yttrium on Microstructure and Mechanical Properties of Ti-43Al-9V Alloy. Chin. J. Rare Met. 2004, 28, 75–77. [Google Scholar]
- Lu, W.J.; Xiao, L.; Xu, D.; Qin, J.N.; Zhang, D. Microstructural characterization of Y2O3 in in situ synthesized titanium matrix composites. J. Alloys Compd. 2007, 433, 140–146. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Kong, F.; Chen, Y. A high-performance β-stabilized Ti-43Al-9V-0.2Y alloy sheet with a nano-scaled, antiphase domain. Mater. Lett. 2018, 214, 182–185. [Google Scholar] [CrossRef]
- Li, B.; Kong, F.; Chen, Y. Effect of Yttrium Addition on Microstructures and Room Temperature Tensile Properties of Ti-47 Al Alloy. J. Rare Earths 2006, 24, 352–356. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Li, B.H.; Kong, F.T. Effects of minor yttrium addition on hot deformability of lamellar Ti-45Al-5Nb alloy. Trans. Nonferrous Met. Soc. China 2007, 17, 58–63. [Google Scholar] [CrossRef]
- Chen, Y.; Niu, H.; Kong, F.; Xiao, S. Microstructure and fracture toughness of a β phase containing TiAl alloy. Intermetallics 2011, 19, 1405–1410. [Google Scholar] [CrossRef]
- Trivedi, P.B.; Patankar, S.N.; Froes, F.S.; Baburaj, E.G. Formation of Al–Y oxide during processing of γ-TiAl. J. Alloys Compd. 2002, 340, 231–235. [Google Scholar] [CrossRef]
- Cui, N.; Kong, F.; Wang, X.; Chen, Y.; Zhou, H. Microstructural evolution, hot workability, and mechanical properties of Ti–43Al–2Cr–2Mn–0.2Y alloy. Mater. Des. 2016, 89, 1020–1027. [Google Scholar] [CrossRef]
- Zhou, H.; Kong, F.; Wu, K.; Wang, X.; Chen, Y. Hot pack rolling nearly lamellar Ti-44Al-8Nb-(W, B, Y) alloy with different rolling reductions: Lamellar colonies evolution and tensile properties. Mater. Des. 2017, 121, 202–212. [Google Scholar] [CrossRef]
- Zong, Y.; Wen, D.; Liu, Z.; Shan, D. γ-Phase transformation, dynamic recrystallization and texture of a forged TiAl-based alloy based on plane strain compression at elevated temperature. Mater. Des. 2016, 91, 321–330. [Google Scholar] [CrossRef]
- Kenel, C.; Dasargyri, G.; Bauer, T.; Colella, A.; Spierings, A.B.; Leinenbach, C.; Wegener, K. Selective laser melting of an oxide dispersion strengthened (ODS) γ-TiAl alloy towards production of complex structures. Mater. Des. 2017, 134, 81–90. [Google Scholar] [CrossRef]
- Li, H.; Long, Y.; Liang, X.; Che, Y.; Liu, Z.; Liu, Y.; Xu, H.; Wang, L. Effects of multiaxial forging on microstructure and high temperature mechanical properties of powder metallurgy Ti-45Al-7Nb-0.3W alloy. Intermetallics 2020, 116, 106647. [Google Scholar] [CrossRef]
- Zong, Y.; Wen, D.; Liu, Z.; Shan, D. Molina-Aldareguia. Slip transfer across γ-TiAl lamellae in tension. Mater. Des. 2018, 146, 81–95. [Google Scholar]
- Erdely, P.; Staron, P.; Maawad, E.; Schell, N.; Klose, J.; Clemens, H.; Mayer, S. Design and control of microstructure and texture by thermomechanical processing of a multi-phase TiAl alloy. Mater. Des. 2017, 131, 286–296. [Google Scholar] [CrossRef]
- Bartels, A.; Hartig, C.; Uhlenhut, H. Influence of the deformation conditions on the texture evolution in γ –TiAl. Mater. Sci. Eng. A 1997, 239, 14–22. [Google Scholar] [CrossRef]
- Kanani, M.; Hartmaier, A.; Janisch, R. Stacking fault based analysis of shear mechanisms at interfaces in lamellar TiAl alloys. Acta Mater. 2016, 106, 208–218. [Google Scholar] [CrossRef]
- Hang, D.Y.; Li, H.Z.; Liang, X.P.; Wei, Z.W.; Liu, Y. Microstructure characteristic for high temperature deformation of powder metallurgy Ti–47Al–2Cr–0.2Mo alloy. Mater. Des. 2014, 59, 415–420. [Google Scholar]
- Zhang, D.Y.; Li, H.Z.; Liang, X.P.; Wei, Z.W.; Liu, Y. Brittle-to-ductile transition temperature and its strain rate sensitivity in a two-phase titanium aluminide with near lamellar microstructure. J. Mater. Sci. 1999, 34, 3155–3159. [Google Scholar]
- Al-Samman, T.; Molodov, K.D.; Molodov, D.A.; Gottstein, G.; Suwas, S. Softening and dynamic recrystallization in magnesium single crystals during c-axis compression. Acta Mater. 2012, 60, 537–545. [Google Scholar] [CrossRef]
- Kong, F.; Xu, X.; Chen, Y.; Zhang, D. Microstructure and mechanical properties of large size as-cast Ti–43Al–9V–0.2Y (at.%) alloy ingot from brim to centre. Mater. Des. 2012, 33, 485–490. [Google Scholar] [CrossRef] [Green Version]
Select Points | Point 1 (at%) | Point 2 (at%) | Point 3 (at%) |
---|---|---|---|
Al | 42.81 | 42.34 | 26.58 |
Ti | 48.74 | 48.33 | 32.37 |
V | 8.32 | 9.18 | 5.49 |
Y | 0.05 | 0.08 | 13.51 |
O | 0.08 | 0.07 | 22.05 |
Total | 100.00 | 100.00 | 100.00 |
RT | 700 °C | 750 °C | 800 °C | 850 °C | 900 °C | |
---|---|---|---|---|---|---|
σs (MPa) | 669 ± 23 | 589 ± 12 | 505 ± 21 | 440 ± 15 | 279 ± 8 | 172 ± 6 |
σb (MPa) | 793 ± 35 | 664 ± 20 | 556 ± 29 | 448 ± 10 | 292 ± 7 | 190 ± 5 |
strain (%) | 1.52 ± 0.17 | 9.2 ± 0.6 | 27.4 ± 1.1 | 39.5 ± 1.3 | 48.4 ± 1.6 | 49.2 ± 1.1 |
Alloys | Room Temperature | 700 °C | ||||
---|---|---|---|---|---|---|
UTS (MPa) | Strain (%) | UTS (MPa) | Strain (%) | |||
Ti-43Al-9V-0.2Y | rolling | 826 | 1.4 | 674 | 27.1 | |
Ti-43Al-9V-0.2Y | casting | 561–634 | 0.45–0.76 | / | / | |
Ti-43Al-2Cr-2Mn-0.2Y | forging | 657 | 0.86 | 496 | 10 | |
Ti-43Al-9V-0.3Y | as-HIPed | 793 | 1.5 | 664 | 9.2 | current alloy |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Liu, N.; Chen, Y.; Zhang, G.; Tian, J.; Kong, F.; Xiao, S.; Sun, J. Microstructure Evolution and Mechanical Properties of PM-Ti43Al9V0.3Y Alloy. Materials 2020, 13, 198. https://doi.org/10.3390/ma13010198
Zhang D, Liu N, Chen Y, Zhang G, Tian J, Kong F, Xiao S, Sun J. Microstructure Evolution and Mechanical Properties of PM-Ti43Al9V0.3Y Alloy. Materials. 2020; 13(1):198. https://doi.org/10.3390/ma13010198
Chicago/Turabian StyleZhang, Dongdong, Na Liu, Yuyong Chen, Guoqing Zhang, Jing Tian, Fantao Kong, Shulong Xiao, and Jianfei Sun. 2020. "Microstructure Evolution and Mechanical Properties of PM-Ti43Al9V0.3Y Alloy" Materials 13, no. 1: 198. https://doi.org/10.3390/ma13010198
APA StyleZhang, D., Liu, N., Chen, Y., Zhang, G., Tian, J., Kong, F., Xiao, S., & Sun, J. (2020). Microstructure Evolution and Mechanical Properties of PM-Ti43Al9V0.3Y Alloy. Materials, 13(1), 198. https://doi.org/10.3390/ma13010198