Inspection of Reactor Steel Degradation by Magnetic Adaptive Testing
Abstract
1. Introduction
2. Sample Preparation and Processing
3. Results
3.1. Charpy Impact Testing
3.2. Magnetic Adaptive Testing
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ferreño, D.; Gorrochategui, I.; Gutiérrez-Solana, F. Degradation Due to Neutron Embrittlement of Nuclear Vessel Steels: A Critical Review about the Current Experimental and Analytical Techniques to Characterise the Material, with Particular Emphasis on Alternative Methodologies. In Nuclear Power—Control, Reliability and Human Factors; Tsvetkov, P., Ed.; InTech: London, UK, September 2011; ISBN 9789533075990. Available online: http://www.intechopen.com/articles/show/title/non-destructive-testing-for-ageing-management-of-nuclear-power-components (accessed on 26 February 2019).
- Takahashi, S.; Kobayashi, S.; Kikuchi, H.; Kamada, Y. Relationship between mechanical and magnetic properties in cold rolled low carbon steel. J. Appl. Phys. 2006, 100, 113908. [Google Scholar] [CrossRef]
- Tomáš, I.; Kadlecová, J.; Konop, R.; Dvoráková, M. Magnetic nondestructive indication of varied brittleness of 15Ch2MFA steel. In Proceedings of the 9th International Conference on Barkhausen Noise and Micromagnetic Testing (ICBM9), Hejnice, Czech Republic, 28–29 June 2011; pp. 55–63, ISBN 978-952-67247-4-4 (paperback), ISBN 978-952-67247-5-1 (CD-ROM). [Google Scholar]
- Takahashi, S.; Kikuchi, H.; Ara, K.; Ebine, N.; Kamada, Y.; Kobayashi, S.; Suzuki, M. In situ magnetic measurements under neutron radiation in Fe metal and low carbon steel. J. Appl. Phys. 2006, 100, 023902. [Google Scholar] [CrossRef]
- Dobmann, G.; Altpeter, I.; Kopp, M.; Rabung, M.; Hubschen, G. ND-materials characterization of neutron induced embrittlement in German nuclear reactor pressure vessel material by micromagnetic NDT techniques. In Electromagnetic Nondestructive Evaluation (XI); IOS Press: Amsterdam, The Netherlands, 2008; p. 54. ISBN 978-1-58603-896-0. [Google Scholar]
- Vandenbossche, L. Magnetic Hysteretic Characterization of Ferromagnetic Materials with Objectives towards Non-Destructive Evaluation of Material Degradation. Ph.D. Thesis, Gent University, Gent, Belgium, 2009. [Google Scholar]
- Gillemot, F.; Barroso, S.P. Possibilities and difficulties of the NDE evaluation of irradiation degradation. In Proceedings of the 8th International Conference on Barkhausen Noise and Micromagnetic Testing (ICBM8), Kalpakkam, India, 11–12 February 2010; ISBN 978-952-67247-2-0. [Google Scholar]
- Barroso, S.P.; Horváth, M.; Horváth, Á. Magnetic measurements for evaluation of radiation damagne on nuclear reactor materials. Nucl. Eng. Des. 2010, 240, 722–725. [Google Scholar] [CrossRef]
- Kobayashi, S.; Gillemot, F.; Horváth, Á.; Székely, R. Magnetic properties of a highly neutron-irradiated nuclear reactor pressure vessel steel. J. Nucl. Mater. 2012, 421, 112–116. [Google Scholar] [CrossRef]
- Minov, B. Investigation of the Hardening in Neutron Irradiated and Thermally Aged Iron-Copper Alloys, on the Basis of Mechanical and Magnetic Relaxation Phenomena. Ph.D. Thesis, Gent University, Gent, Belgium, 2012. [Google Scholar]
- Dobmann, G. Non-Destructive Testing for Ageing Management of Nuclear Power Components. In Nuclear Power—Control, Reliability and Human Factors; Tsvetko, P., Ed.; InTech: London, UK, 2011; ISBN 978-953-307-599-0. Available online: http://www.intechopen.com/articles/show/title/non-destructive-testing-for-ageing-management-of-nuclear-power-components (accessed on 26 February 2019).
- Tomáš, I. Non-Destructive Magnetic Adaptive Testing of Ferromagnetic Materials. J. Mag. Mag. Mat. 2004, 268, 178–185. [Google Scholar] [CrossRef]
- Tomáš, I.; Vértesy, G. Magnetic Adaptive Testing. In Nondestructive Testing Methods and New Applications; Omar, M., Ed.; InTech: London, UK, 2012; ISBN 978-953-51-0108-6. Available online: http://www.intechopen.com/articles/show/title/magnetic-adaptive-testing (accessed on 26 February 2019).
- Tomáš, I.; Vértesy, G.; Gillemot, F.; Székely, R. Nondestructive Magnetic Adaptive Testing of nuclear reactor pressure vessel steel degradation. J. Nucl. Mater. 2013, 432, 371–377. [Google Scholar] [CrossRef]
- Potapov, S.U.; Hawthorne, J.R. The Effect of Residual Elements on 500°F Irradiation Response of Selected Pressure Vessel Steels and Weldments; Naval Research Laboratory Rep.; Naval Research Laboratory: Washington, DC, USA, 1968; p. 6803. [Google Scholar]
- DeVan, M.J. Evaluation of Thermal-Aged Plates, Forgings, and Submerged-Arc Weld Metals. Effects of Radiation on Materials. In Proceedings of the 6th Int. Symp. ASTM STP 1175 American Society for Testing and Materials, Philadelphia, PA, USA, 28 June 1993; pp. 268–282. [Google Scholar]
- Brumovsky, M. Prediction of Radiation Embrittlement of Operation WWER-440 RPVs. In Proceedings of the RER/4/027: Regional Workshop on Reactor Pressure Vessel, Kuznetsovsk, Ukraine, 8–12 September 2008. [Google Scholar]
- Fukakura, J.; Asano, M.; Kikuchi, M.; Ishikawa, M. Effect of thermal ageing on fracture toughness of RPV steel. Nucl. Eng. Des. 1993, 144, 423–429. [Google Scholar] [CrossRef]
- Mayergoyz, I.D. Mathematical Models of Hysteresis; Springer: New York, NY, USA, 1991. [Google Scholar]
- Lee, K.-Y.; Jojhung, M.; Kim, M.; Lee, B. Effects of tempering and PWHT on microstructures and mechanical properties of SA508 GR.4N steel. Nucl. Eng. Technol. 2014, 46, 413–422. [Google Scholar] [CrossRef]
- Podaný, P.; Martínek, P.; Nacházel, P.; Balcar, M. Heat treatment of reactor vessel steel AISI 321. In Proceedings of the COMAT 2012, Plzeň, Czech Republic, 21–22 November 2012. [Google Scholar]
- Heerens, J. Fracture Behavior of Apressure Vessel Steel in the Ductile-To-Brittle Transition Region; NISTIR 88-3099; NIST Publications: Gaithersburg, MD, USA, 1988.
- Vértesy, G.; Tomáš, I. Complex characterization of degradation of ferromagnetic materials by Magnetic Adaptive Testing. IEEE Trans. Magn. 2013, 49, 2881–2885. [Google Scholar] [CrossRef]
C% | Mn% | Si% | S% | P% | Cr% | Ni% | Mo% | V% | Cu% | Co% | Sb% | Sn | As% |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.16 | 0.42 | 0.29 | 0.08 | 0.012 | 1.97 | 1.29 | 0.52 | 0.12 | 0.12 | 0.06 | 0.001 | 0.003 | 0.003 |
C% | Mn% | Si% | S% | P% | Cr% | Ni% | Mo% | V% | Cu% | Co% |
---|---|---|---|---|---|---|---|---|---|---|
0.25 | 0.61 | 0.26 | 0.008 | 0.05 | 0.37 | 0.7 | 0.63 | 0.01 | 0.06 | 0.02 |
Material | TTKV 41J [°C] (As Received) | TTKV 41J [°C] (Thermal Treatment 1) | TTKV 41J [°C] (Thermal Treatment 2) |
---|---|---|---|
A508 Cl2 | −33 ± 14 | −46.5 ± 11 | −29.7 ± 9 |
15Kh2NMFA | −50.4 ± 9.3 | −33.8 ± 18 | +8.1 ± 8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vértesy, G.; Gasparics, A.; Szenthe, I.; Gillemot, F.; Uytdenhouwen, I. Inspection of Reactor Steel Degradation by Magnetic Adaptive Testing. Materials 2019, 12, 963. https://doi.org/10.3390/ma12060963
Vértesy G, Gasparics A, Szenthe I, Gillemot F, Uytdenhouwen I. Inspection of Reactor Steel Degradation by Magnetic Adaptive Testing. Materials. 2019; 12(6):963. https://doi.org/10.3390/ma12060963
Chicago/Turabian StyleVértesy, Gábor, Antal Gasparics, Ildikó Szenthe, Ferenc Gillemot, and Inge Uytdenhouwen. 2019. "Inspection of Reactor Steel Degradation by Magnetic Adaptive Testing" Materials 12, no. 6: 963. https://doi.org/10.3390/ma12060963
APA StyleVértesy, G., Gasparics, A., Szenthe, I., Gillemot, F., & Uytdenhouwen, I. (2019). Inspection of Reactor Steel Degradation by Magnetic Adaptive Testing. Materials, 12(6), 963. https://doi.org/10.3390/ma12060963