Design of Broad Stopband Filters Based on Multilayer Electromagnetically Induced Transparency Metamaterial Structures
Abstract
:1. Introduction
2. Design
3. Simulations and Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Artar, A.; Yanik, A.A.; Altug, H. Multispectral Plasmon Induced Transparency in Coupled Meta-Atoms. Nano Lett. 2011, 11, 1685–1689. [Google Scholar] [CrossRef]
- Marangos, J.P. Electromagnetically induced transparency. J. Mod. Opt. 1998, 45, 471–503. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, C.; Qin, L.; Peng, R.W.; Xu, D.H.; Xiong, X.; Wang, M. Dual-mode electromagnetically induced transparency and slow light in a terahertz metamaterial. Opt. Lett. 2014, 39, 3539–3542. [Google Scholar] [CrossRef]
- Harris, S.; Hau, L.V. Nonlinear optics at low light levels. Phys. Rev. Lett. 1999, 82, 4611–4614. [Google Scholar] [CrossRef]
- Zhu, L.; Meng, F.Y.; Fu, J.H.; Wu, Q.; Hua, J. Multi-band slow light metamaterial. Opt. Express 2018, 20, 4494–4502. [Google Scholar] [CrossRef]
- Zeng, C.; Cui, Y.D.; Liu, X.M. Tunable multiple phase-coupled plasmon induced transparencies in graphene metamaterials. Opt. Express 2015, 23, 545–551. [Google Scholar] [CrossRef]
- Papasimakis, N.; Zheludev, N.I. Metamaterial-induced transparency: Sharp Fano Resonances and Slow light. Opt. Photonics News. 2009, 20, 22–27. [Google Scholar] [CrossRef]
- Zhang, S.; Genov, D.A.; Wang, Y.; Liu, M.; Zhang, X. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett. 2008, 101, 047401. [Google Scholar] [CrossRef]
- Smith, D.R.; Pendry, J.B.; Wiltshire, M.C.K. Metamaterials and Negative Refractive Index. Science 2004, 305, 788–792. [Google Scholar] [CrossRef]
- Zheludev, N.I. The Road Ahead for Metamaterials. Science 2010, 328, 582–583. [Google Scholar] [CrossRef]
- Nakanishi, T.; Kitano, M. Storage and retrieval of electromagnetic waves using electromagnetically induced transparency in a nonlinear metamaterial. Appl. Phys. Lett. 2018, 112, 201905. [Google Scholar] [CrossRef]
- Ling, Y.H.; Huang, L.R.; Hong, W.; Liu, T.J.; Luan, J.; Liu, W.B.; Lai, J.J.; Li, H.P. Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial. Nanoscale 2018, 10, 19517–19523. [Google Scholar] [CrossRef]
- Ospanova, A.K.; Karabchevsky, A.; Basharin, A.A. Metamaterial engineered transparency due to the nullifying of multipole moments. Opt. Lett. 2018, 43, 503–506. [Google Scholar] [CrossRef]
- Lu, H.; Liu, X.M.; Wang, G.X.; Mao, D. Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency. Nanotechnology 2012, 23, 444003. [Google Scholar] [CrossRef]
- Li, X.; Yang, L.Y.; Hu, C.G.; Luo, X.G.; Hong, M.H. Tunable bandwidth of band-stop filter by metamaterial cell coupling in optical frequency. Opt. Express 2011, 19, 5283–5289. [Google Scholar] [CrossRef]
- Liu, R.; Na, B.; Shi, J.H.; Wang, Z.P. Multiple transmission windows in a bilayered metamaterial based on twisted asymmetrically split rings. In Proceedings of the SPIE Nanophotonics and Micro/Nano Optics, 85640W, Beijing, China, 20 November 2012. [Google Scholar] [CrossRef]
- Shao, J.; Li, J.; Li, J.Q.; Wang, Y.K.; Dong, Z.G.; Lu, W.B.; Zhai, Y. The metamaterial analogue of electromagnetically induced transparency by dual-mode excitation of a symmetric resonator. Chin. Phys. B 2013, 22, 107804. [Google Scholar] [CrossRef]
- Jin, X.R.; Zhang, Y.Q.; Zhang, S.; Lee, Y.P.; Rhee, J.Y. Polarization-independent electromagnetically induced transparency-likeeffects in stacked metamaterials based on Fabry-Pérot resonance. J. Opt. 2013, 15, 125104. [Google Scholar] [CrossRef]
- Liu, N.; Langguth, L.; Weiss, T.; Kästel, J.; Fleischhauer, M.; Pfau, T.; Giessen, H. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater. 2009, 8, 758–762. [Google Scholar] [CrossRef]
- Ordal, M.A.; Long, L.L.; Bell, R.J.; Bell, S.E.; Bell, R.R.; Alexander, R.W.; Ward, C.A., Jr. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl. Opt. 1983, 22, 1099–1119. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.R.; Park, J.W.; Zheng, H.Y.; Lee, S.J.; Lee, Y.P.; Rhee, J.Y.; Kim, K.W.; Cheong, H.S.; Jang, W.H. Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling. Opt. Express 2011, 19, 21652–21657. [Google Scholar] [CrossRef]
- Zhang, L.; Tassin, P.; Koschny, T.; Kurter, C.; Anlage, S.M.; Soukoulis, C.M. Large group delay in a microwave metamaterial analog of electromagnetically induced transparency. Appl. Phys. Lett. 2010, 97, 241904. [Google Scholar] [CrossRef] [Green Version]
- Fedotov, V.A.; Rose, M.; Prosvirnin, S.L.; Papasimakis, N.; Zheludev, N.I. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys. Rev. Lett. 2007, 99, 147401. [Google Scholar] [CrossRef]
- Zhang, J.J.; Xiao, S.S.; Jeppesen, C.; Kristensen, A.; Mortensen, N.A. Electromagnetically induced transparency in metamaterials at near-infrared frequency. Opt. Express 2010, 18, 17187–17192. [Google Scholar] [CrossRef]
- Plum, E.; Fedotov, V.A.; Kuo, P.; Tsai, D.P.; Zheludev, N.I. Towards the lasing spaser: Controlling metamaterial optical response with semiconductor quantum dots. Opt. Express 2009, 17, 8548–8551. [Google Scholar] [CrossRef]
- Liu, T.T.; Wang, H.X.; Liu, Y.; Xiao, L.S.; Zhou, C.B.; Xu, C.; Xiao, S.Y. Dynamically tunable electromagnetically induced transparency in a terahertz hybrid metamaterial. Phys. E Low-Dimens. Syst. Nanostruct. 2018, 104, 229–232. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Cao, Y.Y.; Liu, Y.Z.; Liu, Y.; Zhang, Y.P. A novel graphene metamaterial design for tunable terahertz plasmon induced transparency by two bright mode coupling. Opt. Commun. 2017, 391, 9–15. [Google Scholar] [CrossRef]
- Yu, W.; Meng, H.Y.; Chen, Z.J.; Li, X.P.; Zhang, X.; Wang, F.Q.; Wei, Z.C.; Tan, C.H.; Huang, X.G.; Li, S.T. The bright–bright and bright–dark mode coupling-based planar metamaterial for plasmonic EIT-like effect. Opt. Commun. 2018, 414, 29–33. [Google Scholar] [CrossRef]
- Shi, J.H.; Ma, H.F.; Jiang, W.X.; Cui, T.J. Multiband stereometamaterial-based polarization spectral filter. Phys. Rev. B 2012, 86, 035103. [Google Scholar] [CrossRef]
- Liu, R.; Na, B.; Xu, Y.Q.; Zhu, Z.; Wang, Y.K.; Ma, H.F.; Cui, T.J. Engineering electromagnetic responses of bilayered metamaterials based on Fano resonances. Appl. Phys. Lett. 2013, 103, 071906. [Google Scholar]
- Lan, F.; Yang, Z.Q.; Qi, L.M.; Gao, X.; Shi, Z.J. Terahertz dual-resonance bandpass filter using bilayer reformative complementary metamaterial structures. Opt. Lett. 2014, 39, 1709–1712. [Google Scholar] [CrossRef]
- Ustyantsev, M.A.; Marsal, L.F.; Ferre-Borrull, J.; Pallares, J. Effect of the dielectric background on dispersion characteristics metallo-dielectric photonic crystals. Opt. Commun. 2006, 260, 583–587. [Google Scholar] [CrossRef]
- Qi, L.M.; Yang, Z.Q.; Lan, F.; Gao, X.; Shi, Z.J. Properties of obliquely incident electromagnetic wave in one-dimensional magnetized plasma photonic crystals. Phys. Plasmas 2010, 17, 042501. [Google Scholar] [CrossRef]
- Vieu, C.; Carcenac, F.; Pepin, A.; Chen, Y.; Mejias, M.; Lebib, A.; Manin-Ferlazzo, L.; Couraud, L.; Launois, H. Electron beam lithography: Resolution limits and applications. Appl. Surf. Sci. 2000, 164, 111–117. [Google Scholar] [CrossRef]
- Liu, N.; Guo, H.C.; Fu, L.W.; Kaiser, S.; Schweizer, H.; Giessen, H. Three-dimensional photonic metamaterials at optical frequencies. Nat. Mater. 2008, 17, 31–37. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Qi, L.; Shah, S.M.A.; Sun, D.; Li, B. Design of Broad Stopband Filters Based on Multilayer Electromagnetically Induced Transparency Metamaterial Structures. Materials 2019, 12, 841. https://doi.org/10.3390/ma12060841
Liu Z, Qi L, Shah SMA, Sun D, Li B. Design of Broad Stopband Filters Based on Multilayer Electromagnetically Induced Transparency Metamaterial Structures. Materials. 2019; 12(6):841. https://doi.org/10.3390/ma12060841
Chicago/Turabian StyleLiu, Ziyu, Limei Qi, Syed Mohsin Ali Shah, Dandan Sun, and Bin Li. 2019. "Design of Broad Stopband Filters Based on Multilayer Electromagnetically Induced Transparency Metamaterial Structures" Materials 12, no. 6: 841. https://doi.org/10.3390/ma12060841
APA StyleLiu, Z., Qi, L., Shah, S. M. A., Sun, D., & Li, B. (2019). Design of Broad Stopband Filters Based on Multilayer Electromagnetically Induced Transparency Metamaterial Structures. Materials, 12(6), 841. https://doi.org/10.3390/ma12060841