Drug Release Profiles and Disintegration Properties of Pectin Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Viscosity of Film Base Solution
2.3. Preparation of FDs
2.4. Film Disintegration Test
2.5. Colorimetric Assay of Pectin
2.6. Drug Dissolution Test
2.7. Assay of Model Drugs
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ranade, V.V. Drug delivery systems 5A. Oral drug delivery. J. Clin. Pharmacol. 1991, 31, 2–16. [Google Scholar] [CrossRef] [PubMed]
- Arun, A.; Amrish, C.; Vijay, S.; Kamla, P. Fast dissolving oral films: An innovative drug delivery system and dosage form. Int. J. Chem. Tech. Res. 2010, 2, 576–583. [Google Scholar]
- Nehal, S.; Garima, G.; Pramod, K.S. A short review on “A novel approach in oral fast dissolving”. Adv. Biol. Res. 2011, 5, 291–303. [Google Scholar]
- Kathpalia, H.; Gupte, A. An introduction to fast dissolving oral thin film drug delivery systems: A review. Curr. Drug Deliv. 2013, 10, 667–684. [Google Scholar] [CrossRef] [PubMed]
- Londhe, V.; Shirsat, R. Formulation and characterization of fast-dissolving sublingual film of iloperidone using box-behnken design for enhancement of oral bioavailability. AAPS PharmSciTech 2018, 19, 1392–1400. [Google Scholar] [CrossRef] [PubMed]
- Adrover, A.; Varani, G.; Paolicelli, P.; Petralito, S.; Di Muzio, L.; Casadei, M.A.; Tho, I. Experimental and modeling study of drug release from HPMC-based erodible oral thin films. Pharmaceutics 2018, 10, 222. [Google Scholar] [CrossRef] [PubMed]
- Kassem, A.A.; Issa, D.A.; Kotry, G.S.; Farid, R.M. Thiolated alginate-based multiple layer mucoadhesive films of metformin forintra-pocket local delivery: In vitro characterization and clinical assessment. Drug Dev. Ind. Pharm. 2017, 43, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Hanif, M.; Zaman, M. Thiolation of arabinoxylan and its application in the fabrication of controlled release mucoadhesive oral films. DARU 2017, 25, 6. [Google Scholar] [CrossRef] [PubMed]
- Murata, Y.; Isobe, T.; Kofuji, K.; Nishida, N.; Kamaguchi, R. Preparation of fast dissolving films for oral dosage from natural polysaccharides. Materials 2010, 3, 4291–4299. [Google Scholar] [CrossRef] [PubMed]
- Murata, Y.; Kofuji, K.; Nakano, S.; Kamaguchi, R. Cyclodextrin-modified film dosage forms for oral candidiasis treatment. Pharmacol. Pharm. 2015, 6, 247–253. [Google Scholar] [CrossRef]
- Kakino, Y.; Hishikawa, Y.; Onodera, R.; Tahara, K.; Takeuchi, H. Gelation factors of pectin for development of a powder form of gel, dry jelly, as a novel dosage form. Chem. Pharm. Bull. 2017, 65, 1035–1044. [Google Scholar] [CrossRef] [PubMed]
- Bernhardt, D.C.; Pérez, C.D.; Fissore, E.N.; De’Nobili, M.D.; Rojas, A.M. Pectin-based composite film: Effect of corn husk fiber concentration on their properties. Carbohydr. Polym. 2017, 164, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Preibisch, I.; Niemeyer, P.; Yusufoglu, Y.; Gurikov, P.; Milow, B.; Smirnova, I. Polysaccharide-based aerogel bead production via jet cutting method. Materials 2018, 11, 1287. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Fishman, M.L.; Kost, J.; Hicks, K.B. Pectin-based systems for colon-specific drug delivery via oral route. Biomaterials 2003, 24, 3333–3343. [Google Scholar] [CrossRef]
- Zhang, W.; Mahuta, K.M.; Mikulski, B.A.; Harvestine, J.N.; Crouse, J.Z.; Lee, J.C.; Kaltchev, M.G.; Tritt, C.S. Novel pectin-based carriers for colonic drug delivery. Pharm. Dev. Technol. 2016, 21, 127–130. [Google Scholar] [CrossRef] [PubMed]
- Vityazev, F.V.; Fedyuneva, M.I.; Golovchenko, V.V.; Patova, O.A.; Ipatova, E.U.; Durnev, E.A.; Martinson, E.A.; Litvinets, S.G. Pectin-silica gels as matrices for controlled drug release in gastrointestinal tract. Carbohydr. Polym. 2017, 157, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Lara-Espinoza, C.; Carvajal-Millán, E.; Balandrán-Quintana, R.; López-Franco, Y.; Rascón-Chu, A. Pectin and Pectin-Based Composite Materials: Beyond Food Texture. Molecules 2018, 23, 942. [Google Scholar] [CrossRef] [PubMed]
- Murata, Y.; Kokubo, M.; Miyashita, M.; Kawashima, S. Derivation of hydroxamic acid from pectin and its applications in colorimetric determination. Chem. Pharm. Bull. 2003, 51, 897–898. [Google Scholar] [CrossRef] [PubMed]
- Pershing, L.K.; Corlett, J.; Jorgensen, C. In vivo pharmacokinetics and pharmacodynamics of topical ketoconazole and miconazole in human stratum corneum. Antimicrob. Agents Chemother. 1994, 38, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Mostafa, S.; Kayo, M.W.; Goldberg, E.P.; Derendorf, H. HPLC determination of dexamethasone in human plasma and its application to an in vitro release study from endovascular stents. Pharmazie 2006, 61, 908–911. [Google Scholar] [PubMed]
Pectin | Viscosity (mPa·s) |
---|---|
A-PT | 500 |
C-PT | 220 |
LM-5CS-J | 26 |
LM-12CG-J | 50 |
LM-18CG | 70 |
X-602-03 | 70 |
Pectin | Thickness (μm: mean ± SD) |
---|---|
2% A-PT | 29 ± 1 |
2% C-PT | 25 ± 4 |
3% A-PT | 32 ± 2 |
3% C-PT | 25 ± 1 |
4% A-PT | 34 ± 2 |
4% C-PT | 35 ± 2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murata, Y.; Maida, C.; Kofuji, K. Drug Release Profiles and Disintegration Properties of Pectin Films. Materials 2019, 12, 355. https://doi.org/10.3390/ma12030355
Murata Y, Maida C, Kofuji K. Drug Release Profiles and Disintegration Properties of Pectin Films. Materials. 2019; 12(3):355. https://doi.org/10.3390/ma12030355
Chicago/Turabian StyleMurata, Yoshifumi, Chieko Maida, and Kyoko Kofuji. 2019. "Drug Release Profiles and Disintegration Properties of Pectin Films" Materials 12, no. 3: 355. https://doi.org/10.3390/ma12030355
APA StyleMurata, Y., Maida, C., & Kofuji, K. (2019). Drug Release Profiles and Disintegration Properties of Pectin Films. Materials, 12(3), 355. https://doi.org/10.3390/ma12030355