Effect of ZrC Formation on Graphitization of Carbon Phase in Polymer Derived ZrC–C Ceramics
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Preparation of Samples
2.2. Characterization
3. Results and Discussion
3.1. Characterization of As-Prepared PZC
3.2. XPS Analysis of PZC-Derived Carbons
3.3. XRD Analysis of PZC Derived Carbons
3.4. Raman Analysis of PZC-Derived Carbons
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Park, S.J. Carbon/carbon composites. In Carbon Fibers; Springer: Singapore, 2018; pp. 323–359. [Google Scholar]
- Zhuang, L.; Fu, Q.G.; Ma, W.H.; Zhang, Y.Y.; Yan, N.N.; Song, Q.; Zhang, Q. Oxidation protection of C/C composites: Coating development with thermally stabile SiC@PyC nanowires and an interlocking TaB2-SiC structure. Corros. Sci. 2019, 148, 307–316. [Google Scholar] [CrossRef]
- Walker, L.S.; Corral, E.L. Self-generating high-temperature oxidation-resistant glass-ceramic coatings for C-C composites using UHTCs. J. Am. Ceram. Soc. 2014, 97, 3004–3011. [Google Scholar] [CrossRef]
- Storms, E.K. The Refractory Carbides; Academic Press: New York, NY, USA, 1967. [Google Scholar]
- Xie, J.; Li, K.Z.; Sun, G.D.; Li, H. Effects of precursor concentration on the microstructure and properties of ZrC modified C/C composites prepared by precursor infiltration and pyrolysis. Ceram. Int. 2017, 43, 14642–14651. [Google Scholar] [CrossRef]
- Liu, C.; Chen, J.; SU, Z.; Yang, X.; Cao, L.; Huang, Q. Pyrolysis mechanism of ZrC precursor and fabrication of C/C-ZrC composites by precursor infiltration and pyrolysis. Trans. Nonferrous Met. Soc. 2014, 24, 1779–1784. [Google Scholar] [CrossRef]
- Liu, C.Q.; Li, K.Z.; Li, H.J.; Zhang, S.Y.; Zhang, Y.L.; Wang, B. Synthesis, characterization and ceramization of a carbon-rich zirconium-containing precursor for ZrC ceramic. Ceram. Int. 2014, 40, 7285–7292. [Google Scholar] [CrossRef]
- Christopher, L.B.; Ramakrishnan, R.; Henry, C.F. Overcoming the barrier to graphitization in a polymer-derived nanoporous carbon. Carbon 2008, 46, 501–510. [Google Scholar]
- Qiu, H.P.; Han, L.J.; Liu, L. Properties and microstructure of graphitised ZrC/C or SiC/C composites. Carbon 2005, 43, 1021–1025. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Zhen, Q.; Zheng, F.; Lu, F.; Nan, C.W.; Li, R.; Wang, J.S. High-temperature diffusion behavior of ZrC in C matrix and its promotion on graphitization. Trans. Nonferrous Met. Soc. China 2016, 26, 2257–2262. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, W.P.; Chen, Z.F.; Cong, X.N.; Qiu, J.L. Microstructural characterization on ZrC doped carbon/carbon composites. Ceram. Int. 2012, 38, 761–767. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Mei, M.; Li, L.; Nan, C.W.; Wang, J.S.; Xu, Z.H. Influence of ZrC on the microstructure of its surrounding resin-based carbon at high temperature. New Carbon Mater. 2016, 31, 451–454. [Google Scholar] [CrossRef]
- Liu, G.H.; Cheng, L.F.; Li, K.Z.; Chen, Z.K.; Xiong, X.; Luan, X.G. Damage behavior of atomic oxygen on zirconium carbide coating modified carbon/carbon composite. Ceram. Int. 2019. [Google Scholar] [CrossRef]
- Ouyang, H.B.; Zhang, Y.L.; Li, C.Y.; Li, G.B.; Huang, J.F.; Li, H.J. Effects of ZrC/SiC ratios on mechanical and ablation behavior of C/C–ZrC–SiC composites prepared by carbothermal reaction of hydrothermal co-deposited oxides. Corros. Sci. 2019. [Google Scholar] [CrossRef]
- Yan, M.; Wang, S.; Chen, Z.H. Raman spectroscopy studies of the high-temperature evolution of the free carbon phase in polycarbosilane derived SiC ceramics. Ceram. Int. 2010, 36, 2455–2459. [Google Scholar] [CrossRef]
- Franklin, R. Crystallite growth in graphitizing and nongraphitizing carbons. Proc. R. Soc. A- Math. Phys. 1951, 209, 196–218. [Google Scholar]
- Marsh, H.; Warburton, A.P. Catalytic graphtization of carbon using titanium and zirconium. Carbon 1976, 14, 47–52. [Google Scholar] [CrossRef]
- Liu, C.L.; Dong, W.S.; Song, J.R.; Liu, L. Evolution of microstructure and properties of phenolic fibers during carbonization. Mater. Sci. Eng. A 2007, 459, 47–354. [Google Scholar] [CrossRef]
- Kwiecinska, B.; Suárez-Ruiz, I.; Paluszkiewicz, C.; Rodriques, S. Raman spectroscopy of selected carbonaceous samples. Int. J. Coal. Geol. 2010, 84, 206–212. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, S.H.; Liu, Y.J. The effect of titanium incorporation on the thermal stability of phenol-formaldehyde resin and its carbonization microstructure. Polym. Degrad. Stab. 2013, 98, 514–518. [Google Scholar] [CrossRef]
- Cheng, G.W. An inorganic–organic hybrid precursor strategy for the synthesis of zirconium diboride powders. Int. J. Refract. Met. Hard Mater. 2013, 36, 149–153. [Google Scholar] [CrossRef]
- Tao, X.Y.; Wei, X.Y.; Chen, Q.; Lu, W.Z.; Ma, M.; Zhao, T. Synthesis, characterisation and thermal behaviour of new preceramic polymers for zirconium carbide. Adv. Appl. Ceram. 2013, 112, 301–305. [Google Scholar] [CrossRef]
- Anbu, P.; Gopinath, S.C.B.; Yun, H.S.; Lee, C.G. Temperature-dependent green biosynthesis and characterization of silver nanoparticles using balloon flower plants and their antibacterial potential. Mol. Struct. 2019, 1177, 302–309. [Google Scholar] [CrossRef]
- Zhang, D.W.; Cui, Y.X. Surface chemical modification of CVD diamond films by laser irradiation. Int. J. Refract. Met. Hard Mater. 2019, 81, 36–41. [Google Scholar] [CrossRef]
- Cermignani, W.; Paulson, T.E.; Onneby, C.; Panatno, C.G. Synthesis and characterization of boron-doped carbons. Carbon 1995, 33, 367–374. [Google Scholar] [CrossRef]
- Liu, Y.H.; Jing, X.L. Pyrolysis and structure of hyperbranched polyborate modified phenolic resins. Carbon 2007, 45, 1965–1971. [Google Scholar] [CrossRef]
- Henriette, E.S. XPS photoemission in carbonaceous materials: A ‘defect’ peak beside the graphitic asymmetric peak. Carbon 2004, 42, 1713–1721. [Google Scholar]
- Zhou, H.; Zhou, F.; Shen, Y.; Liao, B.; Yu, J.; Zhang, X. Effect of bias voltage on microstructure and mechanical properties of nanocomposite ZrCN films deposited by filtered cathodic vacuum arc. Chin. Phys. Lett. 2018, 35. [Google Scholar] [CrossRef]
- Hagio, T.; Nakamizo, M.; Kobayashi, K. Studies on X-ray diffraction and Raman spectra of B-doped natural graphite. Carbon 1989, 27, 259–263. [Google Scholar] [CrossRef]
- Oya, A.; Otani, S. Influences of particle size of the metal on catalytic graphitization of non-graphitizing carbons. Carbon 1981, 19, 391–400. [Google Scholar] [CrossRef]
- Zhou, D.F.; Zhao, Y.L.; Hao, J.; Ma, Y.; Zhang, X.Y.; Su, Z.M.; Wang, R.S. Effect of ZnCl2 doping on the structure and properties of carbonized phenolic resin material. Chem. J. Chin. U 2013, 12, 2296–2299. [Google Scholar]
- Ferrari, A.C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Endo, M.; Kim, Y.A.; Takeda, T.; Hong, S.H.; Matusita, T.; Hayashi, T.; Dresselhaus, M.S. Structural characterization of carbon nanofibers obtained by hydrocarbon pyrolysis. Carbon 2001, 39, 2003–2010. [Google Scholar] [CrossRef]
- Theodoropoulou, S.; Papadimitriou, D.; Zoumpoulakis, L.; Simitzis, J. Structural and optical characterization of pyrolytic carbon derived from novolac resin. Anal. Bioanal. Chem. 2004, 379, 788–791. [Google Scholar] [CrossRef] [PubMed]
- Anton, R. On the reaction kinetics of Ni with amorphous carbon. Carbon 2008, 46, 656–662. [Google Scholar] [CrossRef]
- Lohitharn, N.; Goodwin, J.G. Impact of Cr, Mn and Zr addition on Fe Fischer-Tropsch synthesis catalysis: Investigation at the active site level using SSITKA. J. Catal. 2008, 257, 142–151. [Google Scholar] [CrossRef]
- Rouzaud, J.N.; Oberlin, A. Structure, microtexture, and optical properties of anthracene and saccharose-based carbons. Carbon 1989, 275, 17–29. [Google Scholar] [CrossRef]
- Lin, Q.Y.; Feng, Z.H.; Liu, Z.J.; Guo, Q.G.; Hu, Z.J.; He, L.L.; Ye, H.Q. Atomic scale investigations of catalyst and catalytic graphitization in a silicon and titanium doped graphite. Carbon 2015, 88, 252–261. [Google Scholar] [CrossRef]
- Anna, M.; Nasibulin, A.G.; Kauppinen, E.I. The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes—A review. J. Phys. Condens. Matter 2003, 15, 3011–3035. [Google Scholar]
Sample | ZrOCl2·8H2O content/g a | A(Zr-O)/A(C=C) | Zirconium Content/wt.% b | Zirconium Content/wt.% c |
---|---|---|---|---|
PZC-0 | 0 | 0 | 0 | 0 |
PZC-1 | 5 | 0.64 | 5 | 11 |
PZC-2 | 10 | 0.66 | 10 | 18 |
PZC-3 | 15 | 0.68 | 16 | 27 |
Sample | Peak Position (eV) | at% of Total Area | Carbon Constituents |
---|---|---|---|
PZC-0 | 283.68 | 62.89 | C–C, C=C |
284.68 | 9.43 | Polymeric C–C | |
285~290 | 27.68 | C–O, C=O | |
PZC-1 | 283.18 | 0.93 | Zr–C |
284.28 | 64.93 | C–C, C=C | |
285–290 | 34.05 | C–O, C=O | |
PZC-2 | 283.08 | 1.27 | Zr–C |
284.48 | 63.70 | C–C (sp3) | |
285–290 | 35.03 | C–O, C=O | |
PZC-3 | 282.88 | 1.73 | Zr–C |
283.98 | 58.58 | C–C (sp2) | |
285–290 | 39.68 | C–O, C=O |
Heat-Treatment Temperature (HTT, °C) | Sample | 2θ (002) | HWHM002 (°) | d002 (nm) | Lc (nm) |
---|---|---|---|---|---|
1800 | PZC-0 | 26.56 | 0.4018 | 0.3403 | 21.22 |
PZC-1 | 26.23 | 0.3247 | 0.3395 | 26.25 | |
PZC-2 | 26.43 | 0.3247 | 0.3370 | 26.26 | |
PZC-3 | 26.23 | 0.3247 | 0.3396 | 26.25 | |
2000 | PZC-0 | 26.73 | 0.3572 | 0.3349 | 23.88 |
PZC-1 | 25.58 | 0.2982 | 0.3480 | 28.54 | |
PZC-2 | 26.38 | 0.2598 | 0.3375 | 32.81 | |
PZC-3 | 26.78 | 0.2922 | 0.3329 | 29.20 | |
2500 | PZC-0 | 26.43 | 0.3247 | 0.3370 | 26.26 |
PZC-1 | 26.38 | 0.2923 | 0.3332 | 29.16 | |
PZC-2 | 26.60 | 0.2273 | 0.3348 | 37.52 | |
PZC-3 | 26.46 | 0.2273 | 0.3366 | 37.51 |
Sample | Components (%) (HTT, 1800 °C) | Components (%) (HTT, 2000 °C) | Components (%) (HTT, 2500 °C) | ||||||
---|---|---|---|---|---|---|---|---|---|
A | T | G | A | T | G | A | T | G | |
PZC-0 | 1 | 0 | 0 | 0.846 | 0.157 | 0 | 0.709 | 0.291 | 0 |
PZC-1 | 0.734 | 0.262 | 0 | 0.601 | 0.399 | 0 | 0.214 | 0.412 | 0.375 |
PZC-2 | 0.358 | 0.509 | 0.133 | 0.281 | 0.511 | 0.208 | 0 | 0.518 | 0.482 |
PZC-3 | 0.250 | 0.668 | 0.083 | 0.144 | 0.601 | 0.255 | 0 | 0.592 | 0.408 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Zhang, L.; Yuan, X.; Li, X.; Wu, Y.; Wang, X. Effect of ZrC Formation on Graphitization of Carbon Phase in Polymer Derived ZrC–C Ceramics. Materials 2019, 12, 4153. https://doi.org/10.3390/ma12244153
Liu C, Zhang L, Yuan X, Li X, Wu Y, Wang X. Effect of ZrC Formation on Graphitization of Carbon Phase in Polymer Derived ZrC–C Ceramics. Materials. 2019; 12(24):4153. https://doi.org/10.3390/ma12244153
Chicago/Turabian StyleLiu, Changqing, Luyue Zhang, Xiaoxiao Yuan, Xu Li, Yuanting Wu, and Xiufeng Wang. 2019. "Effect of ZrC Formation on Graphitization of Carbon Phase in Polymer Derived ZrC–C Ceramics" Materials 12, no. 24: 4153. https://doi.org/10.3390/ma12244153
APA StyleLiu, C., Zhang, L., Yuan, X., Li, X., Wu, Y., & Wang, X. (2019). Effect of ZrC Formation on Graphitization of Carbon Phase in Polymer Derived ZrC–C Ceramics. Materials, 12(24), 4153. https://doi.org/10.3390/ma12244153