Halogen Bonds in 2,5-Dihalopyridine-Copper(I) Halide Coordination Polymers
Abstract
:1. Introduction
2. Results
3. Conclusions
4. Experimental Section
Author Contributions
Funding
Conflicts of Interest
References
- Lehn, J.-M. Toward complex matter: Supramolecular chemistry and self-organization. Proc. Natl. Acad. Sci. USA 2002, 99, 4763–4768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilli, G.; Gilli, P. The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory; International Union of Crystallography Monographs on Crystallography; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The Halogen Bond. Chem. Rev. 2016, 116, 2478–2601. [Google Scholar] [CrossRef] [Green Version]
- Metrangolo, P.; Resnati, G. Halogen Bonding I: Impact on Materials Chemistry and Life Sciences; Topics in Current Chemistry; Springer International Publishing: Berlin, Germany, 2015. [Google Scholar]
- Ding, X.; Tuikka, M.; Haukka, M. Halogen Bonding in Crystal Engineering; Recent Advances in Crystallography; Benedict, J.B., Ed.; IntechOpen: Rijeka, Croatia, 2012. [Google Scholar]
- Li, B.; Zang, S.-Q.; Wang, L.-Y.; Mak, T.C.W. Halogen bonding: A powerful, emerging tool for constructing high-dimensional metal-containing supramolecular networks. Coord. Chem. Rev. 2016, 308, 1–21. [Google Scholar] [CrossRef]
- Bertani, R.; Sgarbossa, P.; Venzo, A.; Lelj, F.; Amati, M.; Resnati, G.; Pilati, T.; Metrangolo, P.; Terraneo, G. Halogen bonding in metal–organic–supramolecular networks. Coord. Chem. Rev. 2010, 254, 677–695. [Google Scholar] [CrossRef]
- Sivchik, V.; Sarker, R.K.; Liu, Z.-Y.; Chung, K.-Y.; Grachova, E.V.; Karttunen, A.J.; Chou, P.-T.; Koshevoy, I.O. Improvement of the Photophysical Performance of Platinum-Cyclometalated Complexes in Halogen-Bonded Adducts. Chem. A Eur. J. 2018, 24, 11475–11484. [Google Scholar] [CrossRef]
- Derossi, S.; Brammer, L.; Hunter, C.A.; Ward, M.D. Halogen Bonded Supramolecular Assemblies of [Ru(bipy)(CN)4]2− Anions and N-Methyl-Halopyridinium Cations in the Solid State and in Solution. Inorg. Chem. 2009, 48, 1666–1677. [Google Scholar] [CrossRef] [PubMed]
- Kalaj, M.; Carter, K.P.; Cahill, C.L. Isolating Equatorial and Oxo Based Influences on Uranyl Vibrational Spectroscopy in a Family of Hybrid Materials Featuring Halogen Bonding Interactions with Uranyl Oxo Atoms. Eur. J. Inorg. Chem. 2017, 2017, 4702–4713. [Google Scholar] [CrossRef]
- Carter, K.P.; Kalaj, M.; Cahill, C.L. Harnessing uranyl oxo atoms via halogen bonding interactions in molecular uranyl materials featuring 2,5-diiodobenzoic acid and N-donor capping ligands. Inorg. Chem. Front. 2017, 4, 65–78. [Google Scholar] [CrossRef]
- Carter, K.P.; Kalaj, M.; Surbella, R.G., III; Ducati, L.C.; Autschbach, J.; Cahill, C.L. Cover Feature: Engaging the Terminal: Promoting Halogen Bonding Interactions with Uranyl Oxo Atoms. Chem. A Eur. J. 2017, 23, 15355–15369. [Google Scholar] [CrossRef]
- Ormond-Prout, J.E.; Smart, P.; Brammer, L. Cyanometallates as Halogen Bond Acceptors. Cryst. Growth Des. 2012, 12, 205–216. [Google Scholar] [CrossRef]
- Oliveira, V.; Cremer, D. Transition from metal-ligand bonding to halogen bonding involving a metal as halogen acceptor a study of Cu, Ag, Au, Pt, and Hg complexes. Chem. Phys. Lett. 2017, 681, 56–63. [Google Scholar] [CrossRef]
- Puttreddy, R.; Peuronen, A.; Lahtinen, M.; Rissanen, K. Metal-Bound Nitrate Anion as an Acceptor for Halogen Bonds in Mono-Halopyridine-Copper(II) Nitrate Complexes. Cryst. Growth Des. 2019, 19, 3815–3824. [Google Scholar] [CrossRef]
- Brammer, L.; Minguez Espallargas, G.; Libri, S. Combining metals with halogen bonds. CrystEngComm 2008, 10, 1712–1727. [Google Scholar] [CrossRef]
- Gorokh, I.D.; Adonin, S.A.; Novikov, A.S.; Usoltsev, A.N.; Plyusnin, P.E.; Korolkov, I.V.; Sokolov, M.N.; Fedin, V.P. Halobismuthates with 3-iodopyridinium cations: Halogen bonding-assisted crystal packing. Polyhedron 2019, 166, 137–140. [Google Scholar] [CrossRef]
- Adonin, S.A.; Gorokh, I.D.; Novikov, A.S.; Samsonenko, D.G.; Yushina, I.V.; Sokolov, M.N.; Fedin, V.P. Halobismuthates with halopyridinium cations: appearance or non-appearance of unusual colouring. CrystEngComm 2018, 20, 7766–7772. [Google Scholar] [CrossRef]
- Adonin, S.A.; Gorokh, I.D.; Novikov, A.S.; Abramov, P.A.; Sokolov, M.N.; Fedin, V.P. Halogen Contacts-Induced Unusual Coloring in BiIII Bromide Complex: Anion-to-Cation Charge Transfer via Br⋅⋅⋅Br Interactions. Chem. A Eur. J. 2017, 23, 15612–15616. [Google Scholar] [CrossRef] [PubMed]
- Politzer, P.; Murray, J.S.; Clark, T. Halogen bonding and other sigma-hole interactions: a perspective. Phys. Chem. Chem. Phys. 2013, 15, 11178–11189. [Google Scholar] [CrossRef]
- Politzer, P.; Murray, J.S. Halogen Bonding: An Interim Discussion. Chem. Phys. Chem. 2013, 14, 278–294. [Google Scholar] [CrossRef]
- Bui, T.T.T.; Dahaoui, S.; Lecomte, C.; Desiraju, G.R.; Espinosa, E. The Nature of Halogen⋅⋅⋅Halogen Interactions: A Model Derived from Experimental Charge-Density Analysis. Angew. Chem. Int. Ed. 2009, 48, 3838–3841. [Google Scholar] [CrossRef]
- Awwadi, F.F.; Willett, R.D.; Haddad, S.F.; Twamley, B. The Electrostatic Nature of Aryl–Bromine–Halide Synthons: The Role of Aryl–Bromine–Halide Synthons in the Crystal Structures of the trans-Bis(2-bromopyridine)dihalocopper(II) and trans-Bis(3-bromopyridine)dihalocopper(II) Complexes. Cryst. Growth Des. 2006, 6, 1833–1838. [Google Scholar] [CrossRef]
- Awwadi, F.F.; Willett, R.D.; Twamley, B.; Turnbull, M.M.; Landee, C.P. Dual Behavior of Bromine Atoms in Supramolecular Chemistry: The Crystal Structure and Magnetic Properties of Two Copper(II) Coordination Polymers. Cryst. Growth Des. 2015, 15, 3746–3754. [Google Scholar] [CrossRef]
- Awwadi, F.F.; Haddad, S.F.; Turnbull, M.M.; Landee, C.P.; Willett, R.D. Copper-halide bonds as magnetic tunnels; structural, magnetic and theoretical studies of trans-bis(2,5-dibromopyridine)dihalo copper(II) and trans-bis(2-bromopyridine)dibromo copper(II). Cryst. Eng. Comm. 2013, 15, 3111–3118. [Google Scholar] [CrossRef]
- Awwadi, F.; Willett, R.D.; Twamley, B. Tuning Molecular Structures Using Weak Noncovalent Interactions: Theoretical Study and Structure of trans-Bis(2-chloropyridine)dihalocopper(II) and trans-Bis(3-chloropyridine)dibromocopper(II). Cryst. Growth Des. 2011, 11, 5316–5323. [Google Scholar] [CrossRef]
- Awwadi, F.F.; Turnbull, M.M.; Alwahsh, M.I.; Haddad, S.F. May halogen bonding interactions compete with Cu⋯Cl semi-coordinate bonds? Structural, magnetic and theoretical studies of two polymorphs of trans-bis(5-bromo-2-chloro pyridine)dichlorocopper(II) and trans-bis(2,5-dichloropyridine)dichlorocopper(II). New J. Chem. 2018, 42, 10642–10650. [Google Scholar] [CrossRef]
- Awwadi, F.F.; Willett, R.D.; Peterson, K.A.; Twamley, B. The Nature of Halogen⋅⋅⋅Halogen Synthons: Crystallographic and Theoretical Studies. Chem. A Eur. J. 2006, 12, 8952–8960. [Google Scholar] [CrossRef] [PubMed]
- Zordan, F.; Purver, S.L.; Adams, H.; Brammer, L. Halometallate and halide ions: nucleophiles in competition for hydrogen bond and halogen bond formation in halopyridinium salts of mixed halide-halometallate anions. Cryst. Eng. Comm. 2005, 7, 350–354. [Google Scholar] [CrossRef]
- Brammer, L.; Espallargas, G.M.; Adams, H. Involving metals in halogen-halogen interactions: Second-sphere Lewis acid ligands for perhalometallate ions (M–X⋅⋅⋅X–C). Cryst. Eng. Comm. 2003, 5, 343–345. [Google Scholar] [CrossRef]
- Zordan, F.; Espallargas, G.M.; Brammer, L. Unexpected structural homologies involving hydrogen-bonded and halogen-bonded networks in halopyridinium halometallate salts. Cryst. Eng. Comm. 2006, 8, 425–431. [Google Scholar] [CrossRef]
- Mínguez Espallargas, G.; Brammer, L.; Sherwood, P. Designing Intermolecular Interactions between Halogenated Peripheries of Inorganic and Organic Molecules: Electrostatically Directed M–X⋅⋅⋅X′–C Halogen Bonds. Angew. Chem. Int. Ed. 2006, 45, 435–440. [Google Scholar] [CrossRef]
- Desiraju, G.R.; Ho, P.S.; Kloo, L.; Legon, A.C.; Marquardt, R.; Metrangolo, P.; Politzer, P.; Resnati, G.; Rissanen, K. Definition of the halogen bond (IUPAC Recommendations 2013). Pure Appl. Chem. 2013, 85, 1711–1713. [Google Scholar] [CrossRef]
- Arunan, E.; Desiraju, G.R.; Klein, R.A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D.C.; Crabtree, R.H.; Dannenberg, J.J.; Hobza, P.; et al. Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure Appl. Chem. 2011, 83, 1637–1641. [Google Scholar] [CrossRef]
- Puttreddy, R.; von Essen, C.; Rissanen, K. Halogen Bonds in Square Planar 2,5-Dihalopyridine–Copper(II) Bromide Complexes. Eur. J. Inorg. Chem. 2018, 2018, 2393–2398. [Google Scholar] [CrossRef]
- Puttreddy, R.; von Essen, C.; Peuronen, A.; Lahtinen, M.; Rissanen, K. Halogen bonds in 2,5-dihalopyridine-copper(II) chloride complexes. CrystEngComm 2018, 20, 1954–1959. [Google Scholar] [CrossRef]
- Bondi, A. van der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, 441–451. [Google Scholar] [CrossRef]
- Otwinowski, Z.; Minor, W. Processing of X-ray diffraction data collected in oscillation mode. In Macromolecular Crystallography Part A. Methods Enzymol; Carter, C.W., Jr., Ed.; Academic Press: Chapel Hill, NC, USA, 1997; Volume 276, pp. 307–326. [Google Scholar]
- Blessing, R.H. Outlier Treatment in Data Merging. J. Appl. Crystallogr. 1997, 30, 421–426. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
Copper(I) Iodide Complexes | ||||
---|---|---|---|---|
Complex | Motif | d(C5–X5∙∙∙Y) [Å] | ∠ (C5–X5∙∙∙Y) [°] | RXBa |
1a | C5–I5∙∙∙I–Cu | 3.656(2) | 174.5(4) | 0.92 |
2a | C5–I5∙∙∙I–Cu | 3.679(1) | 176.1(1) | 0.93 |
3a | C5–I5∙∙∙Br2–C2 | 3.796(5) | 172(1) | 0.99 |
5a | C5–Br5∙∙∙I–Cu | 3.627(2) | 173.2(2) | 0.95 |
6a | C5–Br5∙∙∙I–Cu | 3.678 (3) | 160.6(5) | 0.96 |
C2–Br2∙∙∙Br5–C5 | 3.609(2) | 177.2(4) | 0.98 | |
Copper(I) Bromide Complexes | ||||
1b | C5–I5∙∙∙Br–Cu | 3.503(3) | 174.0(7) | 0.91 |
1b·ACN | C5–I5∙∙∙Br–Cu | 3.470(2) | 176.3(4) | 0.91 |
2b | (Py1)C5–I5∙∙∙Br–Cu | 3.434(2) | 175.4(3) | 0.90 |
(Py2)C5–I5∙∙∙Br–Cu | 3.515(2) | 174.3(3) | 0.92 | |
(Py1)C2–Cl2∙∙∙I5–C5(Py3) | 3.688(3) | 176.8(4) | 0.99 | |
(Py3)C5–I5∙∙∙Cl2–C2(Py3″) | 3.556(3) | 135.6(4) | 0.95 | |
(Py3)C5–I5∙∙∙Cl2–C2(Py2′) | 3.659(4) | 142.9(4) | 0.98 | |
4b | C2–I2∙∙∙Br–Cu | 3.473(5) | 172(1) | 0.91 |
C5–I5∙∙∙Br–Cu | 3.537(5) | 169(1) | 0.92 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
von Essen, C.; Rissanen, K.; Puttreddy, R. Halogen Bonds in 2,5-Dihalopyridine-Copper(I) Halide Coordination Polymers. Materials 2019, 12, 3305. https://doi.org/10.3390/ma12203305
von Essen C, Rissanen K, Puttreddy R. Halogen Bonds in 2,5-Dihalopyridine-Copper(I) Halide Coordination Polymers. Materials. 2019; 12(20):3305. https://doi.org/10.3390/ma12203305
Chicago/Turabian Stylevon Essen, Carolina, Kari Rissanen, and Rakesh Puttreddy. 2019. "Halogen Bonds in 2,5-Dihalopyridine-Copper(I) Halide Coordination Polymers" Materials 12, no. 20: 3305. https://doi.org/10.3390/ma12203305
APA Stylevon Essen, C., Rissanen, K., & Puttreddy, R. (2019). Halogen Bonds in 2,5-Dihalopyridine-Copper(I) Halide Coordination Polymers. Materials, 12(20), 3305. https://doi.org/10.3390/ma12203305