Investigation of Charging Efficiency of a Lithium-ion Capacitor during Galvanostatic Charging Method
Abstract
:1. Introduction
2. Charging Experiment
3. Discharging Experiment
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- What is LIC. Available online: https://www.jmenergy.co.jp/en/lithium_ion_capacitor/ (accessed on 25 September 2019).
- Product Information. Available online: https://www.jmenergy.co.jp/en/product/cell/can_testresults/ (accessed on 25 September 2019).
- Liu, C.; Ren, Q.-Q.; Zhang, S.-W.; Yin, B.-S.; Que, L.-F.; Zhao, L.; Sui, X.-L.; Yu, F.-D.; Li, X.; Gu, D.-M.; et al. High energy and power lithium-ion capacitors based on Mn3O4/3D-graphene as anode and activated polyaniline-derived carbon nanorods as cathode. Chem. Eng. J. 2019, 370, 1485–1492. [Google Scholar] [CrossRef]
- Huang, J.-L.; Fan, L.-Q.; Gu, Y.; Geng, C.-L.; Luo, H.; Huang, Y.-F.; Lin, J.-M.; Wu, J.-H. One-step solvothermal synthesis of high-capacity Fe3O4/reduced graphene oxide composite for use in Li-ion capacitor. J. Alloys Compd. 2019, 788, 1119–1126. [Google Scholar] [CrossRef]
- Sennu, P.; Arun, N.; Madhavi, S.; Aravindan, V.; Lee, Y.-S. All carbon based high energy lithium-ion capacitors from biomass: The role of crystallinity. J. Power Sources 2019, 414, 96–102. [Google Scholar] [CrossRef]
- Boltersdorf, J.; Delp, S.A.; Yan, J.; Cao, B.; Zheng, J.P.; Jow, T.R.; Read, J.A. Electrochemical performance of lithium-ion capacitors evaluated under high temperature and high voltage stress using redox stable electrolytes and additives. J. Power Sources 2018, 373, 20–30. [Google Scholar] [CrossRef]
- Sinkaram, C.; Rajakumar, K.; Asirvadam, V. Modeling battery management system using the lithium-ion battery. In Proceedings of the 2012 IEEE International Conference on Control System, Computing and Engineering, Penang, Malaysia, 23–25 November 2012; pp. 50–55. [Google Scholar]
- Podder, S.; Khan, M.Z.R. Comparison of lead acid and li-ion battery in solar home system of Bangladesh. In Proceedings of the 2016 5th International Conference on Informatics, Electronics and Vision (ICIEV), Dhaka, Bangladesh, 13–14 May 2016; pp. 434–438. [Google Scholar]
- ULTIMO Lithium Ion Capacitor Prismatic Cells. Available online: https://www.jsrmicro.be/emerging-technologies/lithium-ion-capacitor/products/ultimo-lithium-ion-capacitor-prismatic-cells (accessed on 25 September 2019).
- Svensson, L.J.; Koller, J.G. Driving a capacitive load without dissipating fCV2. In Proceedings of the 1994 IEEE Symposium on Low Power Electronics, San Diego, CA, USA, 10–12 October 1994; pp. 100–101. [Google Scholar]
- Athas, W.C.; Svensson, L.J.; Koller, J.G.; Tzartzanis, N.; Chou, E.Y.-C. Low-power digital systems based on adiabatic-switching principles. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 1994, 2, 398–407. [Google Scholar] [CrossRef]
- Moon, Y.; Jeong, D.-K. An efficient charge recovery logic circuit. IEEE J. Solid-State Circuits 1996, 31, 514–522. [Google Scholar] [CrossRef]
- Nakata, S.; Douseki, T.; Kado, Y.; Yamada, J. A Low Power Multiplier Using Adiabatic Charging Binary Decision Diagram Circuit. Jpn. J. Appl. Phys. 2000, 39, 2305–2311. [Google Scholar] [CrossRef]
- Kim, S.; Papaefthymiou, M.C. True single-phase adiabatic circuitry. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2001, 9, 52–63. [Google Scholar]
- Kim, S.; Ziesler, C.H.; Papaefthymiou, M.C. A true single-phase energy-recovery multiplier. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2003, 11, 194–207. [Google Scholar] [Green Version]
- Nakata, S. Adiabatic charging reversible logic using a switched capacitor regenerator. IEICE Trans. Electron 2004, E87-C, 1837–1846. [Google Scholar]
- Hwang, M.-E.; Raychowdhury, A.; Roy, K. Energy-recovery techniques to reduce on-chip power density in molecular nanotechnologies. IEEE Trans. Circuits Syst. I: Regul. Pap. 2005, 52, 1580–1589. [Google Scholar] [CrossRef]
- Chan, S.C.; Shepard, K.L.; Restle, P.J. Distributed Differential Oscillators for Global Clock Networks. IEEE J. Solid-State Circuits 2006, 41, 2083–2094. [Google Scholar] [CrossRef]
- Keung, K.-M.; Manne, V.; Tyagi, A. A Novel Charge Recycling Design Scheme Based on Adiabatic Charge Pump. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2007, 15, 733–745. [Google Scholar] [CrossRef]
- van Elzakker, M.; van Tuijl, E.; Geraedts, P.; Schinkel, D.; Klumperink, E.; Nauta, B. A 1.9 μW 4.4fJ/conversion-step 10b 1MS/s charge-redistribution ADC. In Proceedings of the 2008 IEEE International Solid-State Circuits Conference–Digest of Technical Papers, San Francisco, CA, USA, 3–7 February 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 244–245. [Google Scholar]
- Nakata, S. Stability of adiabatic circuit using asymmetric 1D-capacitor array between the power supply and ground. IEICE Electron. Express 2007, 4, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Chernichenko, D.; Kushnerov, A.; Ben-Yaakov, S. Adiabatic charging of capacitors by Switched Capacitor Converters with multiple target voltages. In Proceedings of the 2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel, Eilat, Israel, 14–17 November 2012; pp. 1–4. [Google Scholar]
- Nakata, S.; Makino, H.; Hosokawa, J.; Yoshimura, T.; Iwade, S.; Matsuda, Y. Energy Efficient Stepwise Charging of a Capacitor Using a DC-DC Converter With Consecutive Changes of its Duty Ratio. IEEE Trans. Circuits Syst. I: Regul. Pap. 2014, 61, 2194–2203. [Google Scholar] [CrossRef]
- Raghav, H.S.; Bartlett, V.A.; Kale, I. Energy efficiency of 2-step charging power-clock for adiabatic logic. In Proceedings of the PATMOS 2016-The 26th International Workshop on Power And Timing Modeling, Optimization and Simulation, Bremen, Germany, 21–23 September 2016; pp. 176–182. [Google Scholar]
- Khorami, A.; Sharifkhani, M. An efficient fast switching procedure for stepwise capacitor chargers. IEEE Trans.Very Large Scale Integr. (VLSI) Syst. 2017, 25, 705–713. [Google Scholar] [CrossRef]
- Nakata, S.; Ono, M.; Sakitani, M. An adiabatic circuit with consecutive changes of the duty ratio of the switching transistor using a microprocessor. J. Circuits Syst. Comput. 2017, 26, 1750007/1–15. [Google Scholar] [CrossRef]
- Nakata, S. An adiabatic charging reversible circuit with stepwise voltage control method using a microprocessor. Results in Phys. 2017, 7, 2976–2978. [Google Scholar] [CrossRef]
- Lee, M.; Yang, J.; Park, M.J.; Jung, S.Y.; Kim, J. Design and analysis of energy-efficient single-pulse piezoelectric energy harvester and power management IC for battery-free wireless remote switch applications. IEEE Trans. Circuits Syst. I: Reg. Pap. 2018, 65, 366–379. [Google Scholar] [CrossRef]
- Nakata, S. Characteristic of an adiabatic charging reversible circuit with a Lithium ion capacitor as an energy storage device. Results in Phys. 2018, 10, 964–966. [Google Scholar] [CrossRef]
- Shah, S.A.A.; Arslan, S.; Kim, H. A Reconfigurable Voltage Converter With Split-Capacitor Charging and Energy Recycling for Ultra-Low-Power Applications. IEEE Access 2018, 6, 68311–68323. [Google Scholar] [CrossRef]
- Yang, F.; Wang, D.; Zhao, Y.; Tsui, K.-L.; Bae, S.J. A study of the relationship between coulombic efficiency and capacity degradation of commercial lithium-ion batteries. Energy 2018, 145, 486–495. [Google Scholar] [CrossRef]
- Doerffel, D.; Abu Sharkh, S. A critical review of using the Peukert equation for determining the remaining capacity of lead-acid and lithium-ion batteries. J. Power Sources 2006, 155, 395–400. [Google Scholar] [CrossRef]
- Yang, H. A Study of Peukert’s Law for Supercapacitor Discharge Time Prediction. In Proceedings of the IEEE Power and Energy Society General Meeting (PESGM), Portland, OR, USA, 5–10 August 2018; pp. 1–5. [Google Scholar]
- Omar, N.; Ronsmans, J.; Firozu, Y.; Monem, M.A.; Samba, A.; Gualous, H.; Hegazy, O.; Smekens, J.; Coosemans, T.; Bossche, P.V.; et al. Lithium-ion capacitor–advanced technology for rechargeable energy storage systems. In Proceedings of the 2013 World Electric Vehicle Symposium and Exhibition (EVS27), Barcelona, Spain, 17–20 November 2013; pp. 1–11. [Google Scholar]
- Fleurbaey, K.; Ronsmans, J.; Hoog, J.; Nikolian, A.; Timmermans, J.M.; Omar, N.; Bossche, P.V.; Mierlo, J.V. Lithium-ion capacitor - electrical and thermal characterization of advanced rechargeable energy storage component. In Proceedings of the European Electric Vehicle Congress 2014, Brussels, Belgium, 3–5 December 2014; pp. 1–11. [Google Scholar]
- Campillo-Robles, J.M.; Artetxe, X.; Sánchez, K.D.T.; Gutiérrez, C.; Macicior, H.; Röser, S.; Wagner, R.; Winter, M. General hybrid asymmetric capacitor model: Validation with a commercial lithium ion capacitor. J. Power Sources 2019, 425, 110–120. [Google Scholar] [CrossRef]
- Zhao, S.; Khan, N.; Nagarajan, S.; Trescases, O. Lithium-Ion-Capacitor-Based Distributed UPS Architecture for Reactive Power Mitigation and Phase Balancing in Datacenters. IEEE Trans. Power Electron. 2019, 34, 7381–7396. [Google Scholar] [CrossRef]
- Miller, J.R. Engineering electrochemical capacitor applications. J. Power Sources 2016, 326, 726–735. [Google Scholar] [CrossRef]
- Uno, M.; Kukita, A. Cycle life evaluation based on accelerated aging testing for lithium-ion capacitors as alternative to rechargeable batteries. IEEE Trans. Ind. Electron. 2016, 63, 1607–1617. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakata, S. Investigation of Charging Efficiency of a Lithium-ion Capacitor during Galvanostatic Charging Method. Materials 2019, 12, 3191. https://doi.org/10.3390/ma12193191
Nakata S. Investigation of Charging Efficiency of a Lithium-ion Capacitor during Galvanostatic Charging Method. Materials. 2019; 12(19):3191. https://doi.org/10.3390/ma12193191
Chicago/Turabian StyleNakata, Shunji. 2019. "Investigation of Charging Efficiency of a Lithium-ion Capacitor during Galvanostatic Charging Method" Materials 12, no. 19: 3191. https://doi.org/10.3390/ma12193191
APA StyleNakata, S. (2019). Investigation of Charging Efficiency of a Lithium-ion Capacitor during Galvanostatic Charging Method. Materials, 12(19), 3191. https://doi.org/10.3390/ma12193191