Influence of Process Parameters on the Porosity, Accuracy, Roughness, and Support Structures of Hastelloy X Produced by Laser Powder Bed Fusion
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Porosity
3.2. Accuracy
3.3. Surface Roughness
3.4. Support Structures
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, F. Mechanical property study on rapid additive layer manufacture Hastelloy® X alloy by selective laser melting technology. Intern. J. Adv. Manuf. Technol. 2012, 58, 545–551. [Google Scholar] [CrossRef]
- Mali, H.S.; Unune, D.R. Machinability of Nickel-Based Superalloys: An Overview. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, Netherlands, 2017. [Google Scholar]
- Smith, R.J.; Lewis, G.J.; Yates, D.H. Development and application of nickel alloys in aerospace engineering. Aircr. Eng. Aerosp. Technol. 2001, 73, 138–147. [Google Scholar] [CrossRef]
- Rao, M.N. Application of superalloys in petrochemical and marine sectors in India. Trans. Indian Inst. Met. 2008, 61, 87–91. [Google Scholar]
- Matsuo, T.; Ueki, M.; Takeyama, M.; Tanaka, R. Strengthening of nickel—base superalloys for nuclear heat exchanger application. J. Mater. Sci. 1987, 22, 1901–1907. [Google Scholar] [CrossRef]
- Weber, J.H. Nickel-based Superalloys: An Overview. In Encyclopedia of Materials: Science and Technology; Elsevier BV: Amsterdam, Netherlands, 2001; pp. 6154–6155. [Google Scholar]
- Tomus, D.; Jarvis, T.; Wu, X.; Mei, J.; Rometsch, P.; Herny, E.; Rideau, J.F.; Vaillant, S. Controlling the microstructure of Hastelloy-X components manufactured by Selective Laser Melting. Phys. Procedia 2013, 41, 823–827. [Google Scholar] [CrossRef]
- Wang, F.; Wu, X.H.; Clark, D. On direct laser deposited Hastelloy X: Dimension, surface finish, microstructure and mechanical properties. Mater. Sci. Technol. 2011, 27, 344–356. [Google Scholar] [CrossRef]
- Zhong, M.; Sun, H.; Liu, W.; Zhu, X.; He, J. Boundary liquation and interface cracking characterization in laser deposition of Inconel 738 on directionally solidified Ni-based superalloy. Scr. Mater. 2005, 53, 159–164. [Google Scholar] [CrossRef]
- Baldan, A. Rejuvenation procedures to recover creep properties of nickel-base superalloys by heat treatment and hot isostatic pressing techniques-A review. J. Mater. Sci. 1991, 26, 3409–3421. [Google Scholar] [CrossRef]
- Savage, W.F.; Krantz, B.M. Microsegregation in autogeneous Hastelloy X welds. Weld. Res. Suppl. 1971, 50. [Google Scholar]
- Calignano, F. Design optimization of supports for overhanging structures in aluminum and titanium alloys by selective laser melting. Mater. Des. 2014, 64, 203–213. [Google Scholar] [CrossRef]
- Hussein, A.; Hao, L.; Yan, C.; Everson, R.; Young, P. Advanced lattice support structures for metal additive manufacturing. J. Mater. Process. Technol. 2013, 213, 1019–1026. [Google Scholar] [CrossRef]
- Nguyen, D.S.; Park, H.S.; Lee, C.M. Effect of cleaning gas stream on products in selective laser melting. Mater. Manuf. Process. 2019, 34, 455–461. [Google Scholar] [CrossRef]
- Manfredi, D.; Calignano, F.; Krishnan, M.; Canali, R.; Paola, E.; Biamino, S.; Ugues, D.; Pavese, M.; Fino, P. Additive Manufacturing of Al Alloys and Aluminium Matrix Composites (AMCs). In Light Metal Alloys Applications; IntechOpen: London, UK, 2014. [Google Scholar]
- Gan, M.X.; Wong, C.H. Practical support structures for selective laser melting. J. Mater. Process. Technol. 2016, 238, 474–484. [Google Scholar] [CrossRef]
- Tomus, D.; Tian, Y.; Rometsch, P.A.; Heilmaier, M.; Wu, X. Influence of post heat treatments on anisotropy of mechanical behaviour and microstructure of Hastelloy-X parts produced by selective laser melting. Mater. Sci. Eng. A 2016, 667, 42–53. [Google Scholar] [CrossRef]
- Harrison, N.J.; Todd, I.; Mumtaz, K. Reduction of micro-cracking in nickel superalloys processed by Selective Laser Melting: A fundamental alloy design approach. Acta Mater. 2015, 94, 59–68. [Google Scholar] [CrossRef]
- Marchese, G.; Basile, G.; Bassini, E.; Aversa, A.; Lombardi, M.; Ugues, D.; Fino, P.; Biamino, S. Study of the microstructure and cracking mechanisms of hastelloy X produced by laser powder bed fusion. Materials (Basel) 2018, 11, 106. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Mata, O.; Wang, X.; Muñiz-Lerma, J.A.; Shandiz, M.A.; Gauvin, R.; Brochu, M. Fabrication of crack-free nickel-based superalloy considered non-weldable during laser powder bed fusion. Materials (Basel) 2018, 11, 1288. [Google Scholar] [CrossRef]
- Parry, L.A.; Ashcroft, I.A.; Wildman, R.D. Geometrical effects on residual stress in selective laser melting. Addit. Manuf. 2019, 25, 166–175. [Google Scholar] [CrossRef]
- Tian, Y.; Tomus, D.; Rometsch, P.; Wu, X. Influences of processing parameters on surface roughness of Hastelloy X produced by selective laser melting. Addit. Manuf. 2017, 13, 103–112. [Google Scholar] [CrossRef]
- Calignano, F. Investigation of the accuracy and roughness in the laser powder bed fusion process. Virtual Phys. Prototyp. 2018, 13, 97–104. [Google Scholar] [CrossRef]
- Thijs, L.; Verhaeghe, F.; Craeghs, T.; Van Humbeeck, J.; Kruth, J.P. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V. Acta Mater. 2010, 58, 3303–3312. [Google Scholar] [CrossRef]
- Nadammal, N.; Kromm, A.; Saliwan-Neumann, R.; Farahbod, L.; Haberland, C.; Portella, P.D. Influence of Support Configurations on the Characteristics of Selective Laser-Melted Inconel 718. JOM 2018, 70, 343–348. [Google Scholar] [CrossRef]
- Bertoli, U.S.; Wolfer, A.J.; Matthews, M.J.; Delplanque, J.-P.R.; Schoenung, J.M. On the limitations of Volumetric Energy Density as a design parameter for Selective Laser Melting. Mater. Des. 2017, 113, 331–340. [Google Scholar] [CrossRef]
- Calignano, F.; Cattano, G.; Manfredi, D. Manufacturing of thin wall structures in AlSi10Mg alloy by laser powder bed fusion through process parameters. J. Mater. Process. Technol. 2018, 255, 773–783. [Google Scholar] [CrossRef]
P (W) | v (mm/s) | hd (mm) | |
---|---|---|---|
In-skin/up-skin/down-skin | 170, 185, 195 | 870, 1000, 1200 | 0.05, 0.08, 0.11 |
Supports | 80, 90 | 400, 500 |
Sample | P (W) | v (mm/s) | hd (mm) | Ed (J/mm3) | El (J/mm) | |
---|---|---|---|---|---|---|
Down-skin (2 layers) | 1 | 195 | 1000 | 0.05 | 195.00 | 0.195 |
2 | 170 | 1000 | 0.05 | 170.00 | 0.170 | |
3 | 195 | 1000 | 0.08 | 121.88 | 0.195 | |
4 | 195 | 870 | 0.08 | 140.09 | 0.224 | |
5 | 170 | 870 | 0.08 | 122.13 | 0.195 | |
6 | 170 | 1000 | 0.08 | 106.25 | 0.170 | |
7 | 170 | 870 | 0.05 | 195.40 | 0.195 | |
8 | 195 | 870 | 0.05 | 224.14 | 0.224 | |
Supports | - | 80 | 400 | - | - | 0.200 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calignano, F.; Minetola, P. Influence of Process Parameters on the Porosity, Accuracy, Roughness, and Support Structures of Hastelloy X Produced by Laser Powder Bed Fusion. Materials 2019, 12, 3178. https://doi.org/10.3390/ma12193178
Calignano F, Minetola P. Influence of Process Parameters on the Porosity, Accuracy, Roughness, and Support Structures of Hastelloy X Produced by Laser Powder Bed Fusion. Materials. 2019; 12(19):3178. https://doi.org/10.3390/ma12193178
Chicago/Turabian StyleCalignano, Flaviana, and Paolo Minetola. 2019. "Influence of Process Parameters on the Porosity, Accuracy, Roughness, and Support Structures of Hastelloy X Produced by Laser Powder Bed Fusion" Materials 12, no. 19: 3178. https://doi.org/10.3390/ma12193178
APA StyleCalignano, F., & Minetola, P. (2019). Influence of Process Parameters on the Porosity, Accuracy, Roughness, and Support Structures of Hastelloy X Produced by Laser Powder Bed Fusion. Materials, 12(19), 3178. https://doi.org/10.3390/ma12193178