Effect of Fe Addition on Microstructure and Mechanical Properties of As-cast Ti49Ni51 Alloy
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
3.1. Microstructure of Ti–Ni–Fe Alloys
3.2. Mechanical Properties of Ti–Ni–Fe Alloys
3.3. Elastic Energy and Toughness of Ti–Ni–Fe Alloys
3.4. Fracture Morphology of Ti–Ni–Fe Alloys
4. Conclusions
- (1)
- The microstructures of Ti48.5Ni51Fe0.5 and Ti48Ni51Fe1 alloys are mainly composed of BCC TiNi matrix phase, Ti3Ni4 and Ni2.67Ti1.33 phases. The microstructure of Ti47Ni51Fe2 alloy is mainly composed of BCC TiNi, Ti3Ni4, Ni2.67Ti1.33, and Ni3Ti phases. The microstructure of the Ti45Ni51Fe4 alloy is mainly composed of TiNi, Ti3Ni4 and Ni3Ti phases.
- (2)
- The Ni3Ti phase precipitates at the adjacent position of Ni2.67Ti1.33 phase. A large number of nano-sized particles precipitated in the matrix phase may inhibit the formation of B2 phase, and promotes the formation of BCC TiNi phase in Ti–Ni–Fe alloys.
- (3)
- The yielding strength of Ti48.5Ni51Fe0.5 and Ti48Ni51Fe1 alloys are 2066 and 2089 MPa, respectively; the two alloys with the high yield strength and fracture strength are an engineering material with excellent mechanical properties. The Ti48.5Ni51Fe0.5 alloy with the low elastic modulus and large elastic energy is a good biomedical alloy of hard tissue implants. In addition, the fracture mechanism of the Ti–Ni–Fe alloys is mainly cleavage fracture or quasi-cleavage fracture, supplemented by ductile fracture.
Author Contributions
Funding
Conflicts of Interest
References
- Shabalovskaya, S.A. Surface, corrosion and biocompatibility aspects of Nitinol as an implant material. Bio-Med. Mater. Eng. 2002, 12, 69–109. [Google Scholar]
- Duerig, T.; Pelton, A.; Stöckel, D. An overview of nitinol medical applications. Mater. Sci. Eng. A 1999, 273–275, 149–160. [Google Scholar] [CrossRef]
- Bonnot, E.; Romero, R.; Mañosa, L.; Vives, E.; Planes, A. Elastocaloric effect associated with the martensitic transition in shape-memory alloys. Phys. Rev. Lett. 2008, 100, 125901. [Google Scholar] [CrossRef] [PubMed]
- Ahadi, A.; Kawasaki, T.; Harjo, S.; Ko, W.S.; Sun, Q.P.; Tsuchiya, K. Reversible elastocaloric effect at ultra-low temperatures in nanocrystalline shape memory alloys. Acta Mater. 2019, 165, 109–117. [Google Scholar] [CrossRef]
- Otsuka, K.; Wayman, C.M. Shape Memory Materials; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Humbeeck, J.V. Non-medical applications of shape memory alloys. Mater. Sci. Eng. A 1999, 273–275, 134–148. [Google Scholar] [CrossRef]
- Geng, F.; Shi, P.; Yang, D.Z. Review on the development of NiTi shape memory alloy as a biomaterial. J. Funct. Mater. 2005, 36, 11–14. [Google Scholar]
- Zhao, X.; Ma, L.; Yao, Y.; Ding, Y.; Shen, X. Ti2Ni alloy: A potential candidate for hydrogen storage in nickel/metal hydride secondary batteries. Energy Environ. Sci. 2010, 3, 1316–1321. [Google Scholar] [CrossRef]
- Cui, J.; Wu, Y.; Muehlbauer, J.; Hwang, Y.; Radermacher, R.; Fackler, S.; Wuttig, M.; Takeuchi, I. Demonstration of high effificiency elastocaloric cooling with large ΔT using NiTi wires. Appl. Phys. Lett. 2012, 101, 25–28. [Google Scholar] [CrossRef]
- Hattori, Y.; Taguchi, T.; Kim, H.Y.; Miyazaki, S. Effect of stoichiometry on shape memory properties and functional stability of Ti–Ni–Pd alloys. Materials 2019, 12, 798. [Google Scholar] [CrossRef]
- Sun, K.S.; Yi, X.Y.; Sun, B.; Gao, W.H.; Wang, H.Z.; Meng, X.L.; Cai, W.; Zhao, L.C. The effect of Hf on the microstructure, transformation behaviors and the mechanical properties of Ti–Ni–Cu shape memory alloys. J. Alloy. Compd. 2019, 772, 603–611. [Google Scholar] [CrossRef]
- Yi, X.Y.; Meng, X.L.; Cai, W.; Zhao, L.C. Multi-stage martensitic transformation behaviors and microstructural characteristics of Ti–Ni–Hf high temperature shape memory alloy powders. J. Alloys Compd. 2019, 781, 644–656. [Google Scholar] [CrossRef]
- Saghaian, S.M.; Karaca, H.E.; Tobe, H.; Souri, M.; Noebe, R.; Chumlyakov, Y.I. Effects of aging on the shape memory behavior of Ni-rich Ni50.3Ti29.7Hf20 single crystals. Acta Mater. 2015, 87, 128–141. [Google Scholar]
- Aaltio, I.; Fukuda, T.; Kakeshita, T. Elastocaloric cooling and heating using R-phase transformation in hot rolled Ni–Ti–Fe shape memory alloys with 2 and 4 at% Fe content. J. Alloys Compd. 2019, 780, 930–936. [Google Scholar] [CrossRef]
- Elahinia, M.; Moghaddam, N.S.; Andani, M.T.; Amerinatanzi, A.; Bimber, B.A.; Hamilton, R.F. Fabrication of NiTi through additive manufacturing: A review. Prog. Mater. Sci. 2016, 83, 630–663. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.Q.; Jiang, S.Y.; Zhu, X.M.; Zhao, Y.N.; Liang, Y.L.; Sun, D. Influence of Fe addition on phase transformation behavior of NiTi shape memory alloy. Trans. Nonferrous Met. Soc. China 2017, 27, 1580–1587. [Google Scholar] [CrossRef]
- Li, Z.Y.; Liu, F.S.; Xu, H.B. Influence of Fe addition on phase transformation temperature and mechanical properties of TiNi shape memory alloys. Acta Aernoautica Et Astronaut. Sin. 2004, 25, 84–87. [Google Scholar]
- Qian, Y.P.; Liu, F.S.; Li, Y.; Xu, H.B. Influence of rolling deformation on the structural and mechanical properties of TiNiFe shape memory alloys. Acta Aernoautica Et Astronaut. Sin. 2006, 27, 336–340. [Google Scholar]
- Wang, J.J.; Omori, T.; Sutou, Y.; Kainuma, R.; Ishida, K. Two-way shape memory effffect induced by cold-rolling in Ti–Ni and Ti–Ni–Fe alloys. Scripta Mater. 2005, 52, 311–316. [Google Scholar] [CrossRef]
- Wang, J.G.; Liu, F.S.; Cao, J.M. The microstructure and thermomechanical behavior of Ti50Ni47Fe2.5Nd0.5 shape memory alloys. Mater. Sci. Eng. A 2010, 527, 6200–6204. [Google Scholar] [CrossRef]
- Xu, H.B.; Jiang, C.B.; Gong, S.K.; Feng, G. Martensitic transformation of the Ti50Ni48Fe2 alloy deformed at different temperatures. Mater. Sci. Eng. A 2000, 281, 234–238. [Google Scholar] [CrossRef]
- Liu, F.S.; Li, Y.; Li, Y.; Xu, H.B. A study on TiNi(Fe,Mo) shape memory alloy. Mater. Sci. Eng. A 2006, 438–440, 896–899. [Google Scholar] [CrossRef]
- Frenzel, J.; Pfetzing, J.; Neuking, K.; Eggeler, G. On the influence of thermomechanical treatments on the microstructure and phase transformation behavior of Ni–Ti–Fe shape memory alloys. Mater. Sci. Eng. A 2006, 481–482, 896–899. [Google Scholar] [CrossRef]
- Nagase, T.; Sasake, A.; Yasuda, H.Y.; Mori, H.; Terai, T.; Kakeshita, T. Stability of B2 phase in Ti–Ni–Fe alloys against Mev electron-irradiation-induced solid-state amorphization and martensite transformation. Intermetallics 2011, 19, 1313–1318. [Google Scholar] [CrossRef]
- Wu, S.K.; Chang, Y.C. Thermal cycling effect on transformation temperatures of different transformation sequences in TiNi-based shape memory alloys. Materials 2019, 12, 2512. [Google Scholar] [CrossRef] [PubMed]
- Basu, R.; Jain, L.; Maji, B.; Krishnan, M. Dynamic recrystallization in a Ni–Ti–Fe shape memory alloy: Effects on austenite-martensite phase transformation. J. Alloy. Compd. 2015, 639, 94–101. [Google Scholar] [CrossRef]
- Gupa, G.K.; Patel, K.K.; Purohit, R.; Bhagoria, P. Effect of rolling on Ni–Ti–Fe shape memory alloys prepared through novel powder metallurgy route. Mater. Today Proc. 2017, 4, 5385–5397. [Google Scholar]
- Liang, Y.L.; Jiang, S.Y.; Zhang, Y.Q.; Yu, J.B. Microstructure, mechanical property, and phase transformation of quaternary NiTiFeNb and NiTiFeTa shape memory alloys. Metals 2017, 7, 309. [Google Scholar] [CrossRef]
- Giri, S.K.; Krishnan, M.; Ramamurty, U. Enhancement of fatigue life of Ni–Ti–Fe shape memory alloys by thermal cycling. Mater. Sci. Eng. A 2010, 528, 363–370. [Google Scholar] [CrossRef]
- Li, P.Y.; Wang, Y.S.; Meng, F.Y.; Cao, L.; He, Z.R. Effect of heat treatment temperature on martensitic transformation and superelasticity of the Ti49Ni51 shape memory alloy. Materials 2019, 12, 2539. [Google Scholar] [CrossRef] [PubMed]
- Li, P.Y. Microstructural and mechanical properties of novel β-type Ti–Nb–Ni alloys containing a second phase. Int. J. Mater. Res. 2018, 109, 708–715. [Google Scholar] [CrossRef]
- Li, P.Y.; Zhang, H.; Tong, T.; He, Z.R. The rapidly solidified β-type Ti–Fe–Sn alloys with high specific strength and low elastic modulus. J. Alloys Compd. 2019, 786, 986–994. [Google Scholar] [CrossRef]
- Takeuchi, A.; Inoue, A. Classifification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 2005, 46, 2817–2829. [Google Scholar] [CrossRef]
- Li, P.Y. Effect of the Cu and Ni content on the crystallization temperature and crystallizationmechanism of La–Al–Cu(Ni) metallic glasses. Aip Adv. 2016, 6, 025010. [Google Scholar] [CrossRef]
- Sun, Q.P.; Ahadi, A.; Li, M.P.; Chen, M.X. Effects of grain size on phase transition behavior of nanocrystalline shape memory alloys. Sci. China Technol. Sci. 2014, 57, 671–679. [Google Scholar] [CrossRef]
- Ahadi, A.; Sun, Q.P. Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi. Acta Mater. 2014, 76, 186–197. [Google Scholar] [CrossRef]
- Ahadi, A.; Sun, Q.P. Stress hysteresis and temperature dependence of phase transition stress in nanostructured NiTi–effects of grain size. Appl. Phys. Lett. 2013, 103, 021902. [Google Scholar] [CrossRef]
- Li, P.Y. Effects of strain rates on shear band and serrated flow in a bulk metallic glass. J. Non-Cryst. Solids 2018, 484, 30–35. [Google Scholar] [CrossRef]
- Li, P.Y.; Wang, G.; Ding, D.; Shen, J. Glass forming ability, thermodynamics and mechanical properties of novel Ti–Cu–Ni–Zr–Hf bulk metallic glasses. Mater. Des. 2014, 53, 145–151. [Google Scholar] [CrossRef]
- Ninomi, M. Recent metallic materials for biomedical applications. Met. Mater. Trans. A 2002, 33A, 477–486. [Google Scholar] [CrossRef]
- Haghighi, S.E.; Liu, Y.J.; Cao, G.H.; Zhang, L.C. Phase transition, microstructural evolution and mechanical properties of Ti–Nb–Fe alloys induced by Fe addition. Mater. Des. 2016, 97, 279–286. [Google Scholar] [CrossRef]
- Fischer, F.D.; Reisner, G.; Werner, E.; Tanaka, K.; Cailletaud, G.; Antretter, T. A new view on transformation induced plasticity (TRIP). Int. J. Plast. 2000, 16, 723–748. [Google Scholar] [CrossRef]
- Wang, J.G.; Pan, Y.; Song, S.X.; Sun, B.A.; Wang, G.; Zhai, Q.J.; Chan, K.C.; Wang, W.H. How hot is a shear band in a metallic glass? Mater. Sci. Eng. A 2016, 651, 321–331. [Google Scholar] [CrossRef]
Alloys | σe MPa | σ0.2 MPa | εp % | σb MPa | E GPa | We × 106 J·m−3 | At × 106 J·m−3 | V (TiNi) % | V (Ti3Ni4) % | V (Ni2.67Ti1.33) % | V (Ni3Ti) % |
---|---|---|---|---|---|---|---|---|---|---|---|
Ti48.5Ni51Fe0.5 | 1779 | 2066 | 2.2 | 2420 | 61.8 | 26.12 | 89.91 | 74.24 | 16.41 | 9.35 | -- |
Ti48Ni51Fe1 | 1604 | 2089 | 2.87 | 2529 | 80.2 | 16.51 | 85.23 | 76.42 | 10.05 | 13.53 | -- |
Ti47Ni51Fe2 | 1566 | 1945 | 2.76 | 2524 | 73.2 | 16.69 | 92.89 | 68.49 | 11.81 | 9.71 | 9.99 |
Ti45Ni51Fe4 | 1463 | 1865 | 3.0 | 2541 | 81.3 | 13.51 | 94.36 | 74.26 | 14.77 | -- | 10.97 |
Number | Ti (at.%) | Ni (at.%) | Fe (at.%) |
---|---|---|---|
1 2 3 | 41.3 34.2 50.0 | 57.9 65.0 48.7 | 0.9 0.8 1.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Jia, Y.; Wang, Y.; Li, Q.; Meng, F.; He, Z. Effect of Fe Addition on Microstructure and Mechanical Properties of As-cast Ti49Ni51 Alloy. Materials 2019, 12, 3114. https://doi.org/10.3390/ma12193114
Li P, Jia Y, Wang Y, Li Q, Meng F, He Z. Effect of Fe Addition on Microstructure and Mechanical Properties of As-cast Ti49Ni51 Alloy. Materials. 2019; 12(19):3114. https://doi.org/10.3390/ma12193114
Chicago/Turabian StyleLi, Peiyou, Yuefei Jia, Yongshan Wang, Qing Li, Fanying Meng, and Zhirong He. 2019. "Effect of Fe Addition on Microstructure and Mechanical Properties of As-cast Ti49Ni51 Alloy" Materials 12, no. 19: 3114. https://doi.org/10.3390/ma12193114
APA StyleLi, P., Jia, Y., Wang, Y., Li, Q., Meng, F., & He, Z. (2019). Effect of Fe Addition on Microstructure and Mechanical Properties of As-cast Ti49Ni51 Alloy. Materials, 12(19), 3114. https://doi.org/10.3390/ma12193114