3D Arrays of Super-Hydrophobic Microtubes from Polypore Mushrooms as Naturally-Derived Systems for Oil Absorption
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Functionalisation of Ganoderma Applanatum Fungi
2.3. Sample Characterisation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xue, Z.; Cao, Y.; Liu, N.; Feng, L.; Jiang, L. Special wettable materials for oil/water separation. J. Mater. Chem. A 2014, 2, 2445–2460. [Google Scholar] [CrossRef]
- Lee, C.H.; Tiwari, B.; Zhang, D.; Yap, Y.K. Water purification: Oil-water separation by nanotechnology and environmental concerns. Environ. Sci. Nano 2017, 4, 514–525. [Google Scholar] [CrossRef]
- Zhang, W.; Shi, Z.; Zhang, F.; Liu, X.; Jin, J.; Jiang, L. Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux. Adv. Mater. 2013, 25, 2071–2076. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Gong, Z.; He, Z.; Yang, J.; Chen, Y.; Tang, C.; Liu, Y.; Fan, M.; Lau, W.-M. 3D printing of a mechanically durable superhydrophobic porous membrane for oil-water separation. J. Mater. Chem. A 2017, 5, 12435–12444. [Google Scholar] [CrossRef]
- Qiao, X.; Yang, C.; Zhang, Q.; Yang, S.; Chen, Y.; Zhang, D.; Yuan, X.; Wang, W.; Zhao, Y. Preparation of parabolic superhydrophobic material for oil-water separation. Materials 2018, 11, 1914. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xiao, C.; Liu, H.; Huang, Q.; Hao, J.; Fu, H. Poly(vinylidene Fluoride-Hexafluoropropylene) porous membrane with controllable structure and applications in efficient oil/water separation. Materials 2018, 11, 443. [Google Scholar] [CrossRef]
- Doshi, B.; Sillanpaa, M.; Kalliola, S. A review of bio-based materials for oil spill treatment. Water Res. 2018, 135, 262–277. [Google Scholar] [CrossRef]
- Chen, Y.; Su, N.; Zhang, K.; Zhu, S.; Zhao, L.; Fang, F.; Ren, L.; Guo, Y. In-depth analysis of the structure and properties of two varieties of natural luffa sponge fibers. Materials 2017, 10, 479. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, H.; Chu, B.; Hisiao, B.S. Super-hydrophobic modification of porous natural polymer “luffa sponge” for oil absorption. Polymer 2017, 126, 470–476. [Google Scholar] [CrossRef]
- Lin, Y.; Yi, P.; Yu, M.; Li, G. Fabrication and performance of a novel 3D superhydrophobic material based on a loofah sponge from plant. Mater. Lett. 2018, 230, 219–223. [Google Scholar] [CrossRef]
- Yu, M.; Lin, B.; Chen, S.; Deng, Q.; Liu, G.; Wang, Q. Biomimetic fabrication of superhydrophobic loofah sponge: Robust for highly efficient oil-water separation in harsh environments. RSC Adv. 2018, 8, 24297–24304. [Google Scholar] [CrossRef]
- Chai, W.; Liu, X.; Zou, J.; Zhang, X.; Li, B.; Yin, T. Pomelo peel modified with acetic anhydride and styrene as new sorbents for removal of oil pollution. Carbohydr. Polym. 2015, 132, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Lv, N.; Wang, X.; Peng, S.; Zhang, H.; Luo, L. Study of the kinetics and equilibrium of the adsorption of oils onto hydrophobic jute fiber modified via the sol-gel method. Int. J. Environ. Res. Public Health 2018, 15, 969. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Zhu, T.; Li, S.; Huang, J.; Mao, J.; Yang, H.; Gao, S.; Chen, Z.; Lai, Y. A novel strategy for fabricating robust superhydrophobic fabrics by environmentally-friendly enzyme etching. Chem. Eng. J. 2019, 355, 290–298. [Google Scholar] [CrossRef]
- Ferreira, I.C.F.R.; Heleno, S.A.; Reis, F.S.; Stojkovic, D.; Queiroz, M.J.R.P.; Vasconcelos, M.H.; Sokovic, M. Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities. Phytochemistry 2015, 114, 38–55. [Google Scholar] [CrossRef] [PubMed]
- Li, L.F.; Liu, H.B.; Zhang, Q.W.; Li, Z.P.; Wong, T.L.; Fung, H.Y.; Zhang, J.X.; Bai, S.P.; Lu, A.P.; Han, Q.B. Comprehensive comparison of polysaccharides from Ganoderma lucidum and G. sinense: Chemical, antitumor, immunomodulating and gut-microbiota modulatory properties. Sci. Rep. 2018, 8, 6172. [Google Scholar] [CrossRef] [PubMed]
- Cör, D.; Knez, Z.; Hrnčič, M.K. Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase effect of Ganoderma Lucidum terpenoids and polysaccharides: A review. Molecules 2018, 23, 649. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, A.M.; Wright, J.E. Taxonomy of Ganoderma from southern South America: Subgenus Ganoderma. Mycol. Res. 1999, 103, 661–673. [Google Scholar] [CrossRef]
- Richter, C.; Wittstein, K.; Kirk, P.M.; Stadler, M. An assessment of the taxonomy and chemotaxonomy of Ganoderma. Fungal Divers. 2015, 71, 1–15. [Google Scholar] [CrossRef]
- Xu, Q.F.; Mondal, B.; Lyons, A.M. Fabricating superhydrophobic polymer surfaces with excellent abrasion resistance by a simple lamination templating method. ACS Appl. Mater. Interfaces 2011, 3, 3508–3514. [Google Scholar] [CrossRef] [PubMed]
- Leonard, A.C. Two Ganoderma species compared. Mycologist 1998, 12, 65–68. [Google Scholar] [CrossRef]
- Balzamo, G.; Willcock, H.; Ali, J.; Ratcliffe, E.; Mele, E. Bioinspired poly (vinylidene fluoride) membranes with directional release of therapeutic essential oils. Langmuir 2018, 34, 8652–8660. [Google Scholar] [CrossRef]
- Yekta-Fard, M.; Ponter, A.B. Factors affecting the wettability of polymer surfaces. J. Adhes. Sci. Technol. 1992, 6, 253–277. [Google Scholar] [CrossRef]
- Kamusewitz, H.; Possart, W.; Paul, D. The relation between Young’s equilibrium contact angle and the hysteresis on rough paraffin wax surfaces. Colloids Surf. A 1999, 156, 271–279. [Google Scholar] [CrossRef]
- Zeng, O.; Wang, X.; Yuan, Z.; Wang, M.; Huang, J. Fabrication of a superhydrophobic surface on copper foil based on ammonium bicarbonate and paraffin wax coating. Surf. Topogr. Metrol. Prop. 2015, 3, 035001. [Google Scholar] [CrossRef]
- Keita, E.; Koehler, S.A.; Faure, P.; Weitz, D.A.; Coussot, P. Drying kinetics driven by the shape of the air/water interface in a capillary channel. Eur. Phys. J. E 2016, 39, 23. [Google Scholar] [CrossRef] [PubMed]
- Yiotis, A.G.; Salin, D.; Tajer, E.S.; Yortsos, Y.C. Analytical solutions of drying in porous media for gravity-stabilized fronts. Phys. Rev. E Stat. Nonlin. Soft Matter. Phys. 2012, 85, 046308. [Google Scholar] [CrossRef] [PubMed]
- Thiery, J.; Rodts, S.; Weitz, D.A.; Coussot, P. Drying regimes in homogeneous porous media from macro- to nanoscale. Phys. Rev. Fluids 2017, 2, 074201. [Google Scholar] [CrossRef]
- Li, Y.; Samad, A.Y.; Polychronopoulou, K.; Alhassan, S.M.; Liao, K. From biomass to high performance solar-thermal and electric–thermal energy conversion and storage materials. J. Mater. Chem. A 2014, 2, 7759–7765. [Google Scholar] [CrossRef]
- Tang, Q.; Sun, J.; Yu, S.; Wang, G. Improving thermal conductivity and decreasing supercooling of paraffin phase change materials by n-octadecylamine-functionalized multi-walled carbon nanotubes. RSC Adv. 2014, 4, 36584–36590. [Google Scholar] [CrossRef]
- Paul, U.C.; Fragouli, D.; Bayer, I.S.; Athanassiou, A. Functionalized cellulose networks for efficient oil removal from oil–water emulsions. Polymers 2016, 8, 52. [Google Scholar] [CrossRef]
- Nascimento, A.E.G.; Barros Neto, E.L.; Moura, M.C.P.A.; Castro Dantas, T.N.; Dantas Neto, A.A. Wettability of paraffin surfaces by nonionic surfactants: Evaluation of surface roughness and nonylphenol ethoxylation degree. Colloids Surf. A Physicochem. Eng. Asp. 2015, 480, 376–383. [Google Scholar] [CrossRef]
- Wang, M.J.; Lin, F.H.; Hung, Y.L.; Lin., S.Y. Dynamic behaviors of droplet impact and spreading: Water on five different substrates. Langmuir 2009, 25, 6772–6780. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Cao, E.; Zhu, Y.; Wang, A.; Hu, H. Perfluorosilane treated Calotropis gigantea fiber: Instant hydrophobic–oleophilic surface with efficient oil-absorbing performance. Chem. Eng. J. 2016, 295, 477–483. [Google Scholar] [CrossRef]
- Zheng, Y.; Cao, E.; Tu, L.; Wang, A.; Hu, H. A comparative study for oil-absorbing performance of octadecyltrichlorosilane treated Calotropis gigantea fiber and kapok fiber. Cellulose 2017, 24, 989–1000. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, Y.; Wang, A. Superhydrophobic kapok fiber oil-absorbent: Preparation and high oil absorbency. Chem. Eng. J. 2012, 213, 1–7. [Google Scholar] [CrossRef]
- Gao, L.; McCarthy, T.J. How Wenzel and Cassie were wrong. Langmuir 2007, 23, 3762–3765. [Google Scholar] [CrossRef]
- Gao, L.; McCarthy, T.J. Contact Angle Hysteresis Explained. Langmuir 2006, 22, 6234–6237. [Google Scholar] [CrossRef]
- Bormashenko, E. Wetting transitions on biomimetic surfaces. Philos. Trans. R. Soc. A 2010, 368, 4695–4711. [Google Scholar] [CrossRef]
- Liu, H.H.; Zhang, H.Y.; Li, W. Thermodynamic analysis on wetting behavior of hierarchical structured superhydrophobic surfaces. Langmuir 2011, 27, 6260–6267. [Google Scholar] [CrossRef]
- Mele, E.; Girardo, S.; Pisignano, D. Strelitzia reginae leaf as a natural template for anisotropic wetting and superhydrophobicity. Langmuir 2012, 28, 5312–5317. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, Y.; Huang, J.; Chen, Z.; Chen, G.; Lai, Y. Bioinspired surfaces with superamphiphobic properties: Concepts, synthesis, and applications. Adv. Funct. Mater. 2018, 19, 1707415. [Google Scholar] [CrossRef]
- Deschamps, G.; Caruel, H.; Borredon, M.E.; Bonnin, C.; Vignoles, C. Oil removal from water by selective sorption on hydrophobic cotton fibers. 1. Study of sorption properties and comparison with other cotton fiber-based sorbents. Environ. Sci. Technol. 2003, 37, 1013–1015. [Google Scholar] [CrossRef] [PubMed]
- Annunciado, T.R.; Sydenstricker, T.H.; Amico, S.C. Experimental investigation of various vegetable fibers as sorbent materials for oil spills. Mar. Pollut. Bull. 2005, 50, 1340–1346. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, F. Structure and growth of self-assembling monolayers. Prog. Surf. Sci. 2000, 65, 151–257. [Google Scholar] [CrossRef]
- Ge, M.; Cao, C.; Huang, J.; Zhang, X.; Tang, Y.; Zhou, X.; Zhang, K.; Chen, Z.; Lai, Y. Rational design of materials interface at nanoscale towards intelligent oil-water separation. Nanoscale Horiz. 2018, 3, 235–260. [Google Scholar] [CrossRef]
- Li, N.; Yu, C.; Si, Y.; Song, M.; Dong, Z.; Jiang, L. Janus gradient meshes for continuous separation and collection of flowing oils under water. ACS Appl. Mater. Interfaces 2018, 10, 7504–7511. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, N.; Cao, Y.; Lin, X.; Liu, Y.; Feng, L. Superwetting porous materials for wastewater treatment: From immiscible oil/water mixture to emulsion separation. Adv. Mater. Interfaces 2017, 4, 1600029. [Google Scholar] [CrossRef]
- Mokhtari-Hosseini, Z.B.; Hatamian-Zarmi, A.; Mohammadnejad, J.; Ebrahimi-Hosseinzadeh, B. Chitin and chitosan biopolymer production from the Iranian medicinal fungus Ganoderma lucidum: Optimization and characterization. Prep. Biochem. Biotechnol. 2018, 17, 1–9. [Google Scholar] [CrossRef]
- Cheong, J.-Y.; Park, W.-B. Conversion of water-insoluble components of the basidiocarps of Ganoderma lucidum to water-soluble components by hydrolyzing with chitinase. Arch. Pharm. Res. 1996, 19, 326–334. [Google Scholar] [CrossRef]
- Petropavlovskii, G.A.; Pazukhina, G.A.; Ovchinnikov, I.V.; Petrova, V.A.; Nud’ga, L.A. Chemical composition and properties of cultivated wood-rotting fungi Phanerochaete Sanguinea and Ganoderma Applanatum. Russ. J. Appl. Chem. 2001, 74, 142–144. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balzamo, G.; Singh, N.; Wang, N.; Vladisavljević, G.T.; Bolognesi, G.; Mele, E. 3D Arrays of Super-Hydrophobic Microtubes from Polypore Mushrooms as Naturally-Derived Systems for Oil Absorption. Materials 2019, 12, 132. https://doi.org/10.3390/ma12010132
Balzamo G, Singh N, Wang N, Vladisavljević GT, Bolognesi G, Mele E. 3D Arrays of Super-Hydrophobic Microtubes from Polypore Mushrooms as Naturally-Derived Systems for Oil Absorption. Materials. 2019; 12(1):132. https://doi.org/10.3390/ma12010132
Chicago/Turabian StyleBalzamo, Gianluca, Naval Singh, Ningjing Wang, Goran T. Vladisavljević, Guido Bolognesi, and Elisa Mele. 2019. "3D Arrays of Super-Hydrophobic Microtubes from Polypore Mushrooms as Naturally-Derived Systems for Oil Absorption" Materials 12, no. 1: 132. https://doi.org/10.3390/ma12010132
APA StyleBalzamo, G., Singh, N., Wang, N., Vladisavljević, G. T., Bolognesi, G., & Mele, E. (2019). 3D Arrays of Super-Hydrophobic Microtubes from Polypore Mushrooms as Naturally-Derived Systems for Oil Absorption. Materials, 12(1), 132. https://doi.org/10.3390/ma12010132