Low Infrared Emissivity Coating Based on Graphene Surface-Modified Flaky Aluminum
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of Graphene Surface-Modified Flaky Aluminum Powders (rGO-FAl)
2.3. Preparation of Low Infrared Emissivity Coating
2.4. Characterization
3. Results and Discussion
3.1. Characterization of rGO-FAl Complex Particles
3.2. The Vis-NIR Diffuse Reflection Characteristics of rGO-FAl Powders
3.3. Infrared Emissivity and Glossiness of rGO-FAl Coating
3.4. Anticorrosive Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hu, C.; Xu, G.; Shen, X.; Huang, R.; Li, F. Thermal ageing studies on low infrared emissivity composite coatings. J. Alloy. Compd. 2010, 496, 691–694. [Google Scholar] [CrossRef]
- Wu, G.; Yu, D. Preparation and characterization of a new low infrared-emissivity coating based on modified aluminum. Prog. Org. Coat. 2013, 76, 107–112. [Google Scholar] [CrossRef]
- Yan, X.; Xu, G. Influence of silane coupling agent on corrosion-resistant property in low infrared emissivity Cu/Polyurethane coating. Prog. Org. Coat. 2012, 73, 232–238. [Google Scholar] [CrossRef]
- Deya, M.C.; Blustein, G.; Romagnoli, R.; Del Amo, B. The influence of the anion type on the anticorrosive behavior of inorganic phosphate. Surf. Coat. Technol. 2002, 150, 133–142. [Google Scholar] [CrossRef]
- Kohl, M.; Kalendova, A.; Boidin, R.; Nemec, P. The effect of amorphous chalcogenides on mechanical and anticorrosive property of protective organic coatings containing high amounts of zinc metal particles. Prog. Org. Coat. 2014, 77, 1369–1375. [Google Scholar] [CrossRef]
- Xu, X.; Wang, J.; Zhang, M.L. One step synthesis of lamellar molybdate pillared hydrotalcite and its application For AZ31Mg alloy protection. Solid State Sci. 2009, 11, 376–381. [Google Scholar] [CrossRef]
- Li, D.; Wang, F.; Yu, X.; Wang, J.; Liu, Q. Anticorrosion organic coating with layered double hydroxide loaded with corrosion inhibitor of tungstate. Prog. Org. Coat. 2011, 71, 302–309. [Google Scholar] [CrossRef]
- Yuan, L.; Weng, X.; Lu, H.; Deng, L. Preparation and infrared reflection of Al/Cr2O3 composite particles. J. Inorg. Mater. 2013, 28, 545–550. [Google Scholar] [CrossRef]
- Xie, X.; Zhao, K.; Xu, X.; Zhao, W. Study of heterogeneous electron transfer on the graphene/self-assemble monolayer modified gold electrode by eletrochemical approach. J. Phys. Chem. C 2010, 114, 14243–14250. [Google Scholar] [CrossRef]
- Sojoudi, H.; Baltazar, J.; Tolbert, L.M.; Henderson, C.L. Creating graphene p-n junctions using Self-assembled monolayers. Appl. Mater. Interfaces 2012, 4, 4781–4786. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Kong, J.; Liu, H.; Zhuang, Q.; Gu, J.; Guo, Z. Ultra-high Thermal Conductivity and Rapid Heat Response in Self-aligned Graphene/Poly(benzobisoxazole) Nanocomposites. Nanoscale 2016, 8, 19983–19994. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Tang, Y.; Xi, J.; Kong, J. Covalent Functionalization of Chemically-Converted Graphene Sheets with Poly(ionic liquid)s and High Adsorption Capacity of Anionic Dyes. Appl. Surf. Sci. 2015, 326, 276–284. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, L.; Yun, J.; Wang, X.; Kong, J. Constructing Magnetic Si-C-Fe Hybrid Microspheres for Room Temperature Nitroarene Reduction. J. Mater. Chem. A 2017, 5, 10986–10997. [Google Scholar] [CrossRef]
- Kirkland, N.T.; Schiller, T.; Medhekar, N.; Birbilis, N. Exploring graphene as a corrosion protection barrier. Corros. Sci. 2012, 56, 1–4. [Google Scholar] [CrossRef]
- Shen, X.J.; Pei, X.Q.; Fu, S.Y.; Friedrich, K. Significantly modified tribological performance of epoxy nanocomposites at very low graphene oxide content. Polymer 2013, 54, 1234–1242. [Google Scholar] [CrossRef]
- Bortz, D.R.; Heras, E.G.; Martin-Gullon, I. Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites. Macromolecules 2012, 45, 238–245. [Google Scholar] [CrossRef]
- Qian, X.; Song, L.; Yu, B.; Wang, B.; Yuan, B.; Shi, Y.; Hu, Y.; Yuen, R.K. Novel organic-inorganic flame retardant of epoxy resins. J. Mater. Chem. A1 2013, 6822–6830. [Google Scholar] [CrossRef]
- Kugler, S.; Kowalczyk, K.; Spychaj, T. Influence of synthetic and bio-based amine curing agents on properties of solventless epoxy varnishes and coatings with carbon nanofillers. Prog. Org. Coat. 2017, 109, 83–91. [Google Scholar] [CrossRef]
- Jeong, Y.G.; An, J.-E. Effects of mixed carbon filler composition on electric heating behavior of thermally-cured epoxy-based composite films. Compos. Pt. A 2014, 56, 1–7. [Google Scholar] [CrossRef]
- Kowalczyk, K.; Kugler, S.; Spychaj, T. Antistatic polyurethane coats with hybrid carbon nanofillers. Polimery/Polymers 2014, 59, 650–655. [Google Scholar] [CrossRef]
- Yu, D.; Wen, S.; Yang, J.; Wang, J.; Chen, Y.; Luo, J.; Wu, Y. RGO modified ZnAl-LDH as epoxy nanostructure filler: Anovelsynthetic approach to anticorrosive waterborne coating. Surf. Coat. Technol. 2017, 326, 207–215. [Google Scholar] [CrossRef]
- Hu, H.; Hea, Y.; Long, Z.; Zhan, Y. Synergistic effect of functional carbon nanotubes and graphene oxide on the anticorrosion performance of epoxy coating. Polym. Adv. Technol. 2017, 28, 754–762. [Google Scholar] [CrossRef]
- Liang, J.; Wu, X.-W.; Ling, Y.; Yu, S.; Zhang, Z. Trilaminar structure hydrophobic graphene oxide decorated organosilane composite coatings for corrosion protection. Surf. Coat. Technol. 2018, 339, 65–77. [Google Scholar] [CrossRef]
- Schniepp, H.C.; Li, J.L.; McAllister, M.J.; Sai, H.; Herrera-Alonso, M.; Adamson, D.H.; Prud’homme, R.K.; Car, R.; Saville, D.A.; Aksay, I.A. Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. J. Phys. Chem. B 2006, 110, 8535–8539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, L.; Zhao, Y.; Xing, L.; Liu, P.; Wang, Z.; Zhang, Y.; Liu, X. Preparation of Phosphonic Acid Functionalized Graphene Oxide-modified Aluminum Powder with Enhanced Anticorrosive Properties. Appl. Surf. Sci. 2017, 411, 235–239. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman Spectra of Disordered and Amorphous Carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef]
- Manara, J.; Reidinger, M.; Rydzek, M.; Arduini-Schuster, M. Polymer-based pigmented coatings on flexible substrates with spectrally selective characteristics to improve the thermal properties. Prog. Org. Coat. 2011, 70, 199–204. [Google Scholar] [CrossRef]
- Bohren Craig, F.; Huffman Donal, R. Absorption and Scattering of Light by Small Particles; Wiley: New York, NY, USA, 1998; pp. 64–69. [Google Scholar]
- Prasai, D.; Tuberquia, J.C.; Hari, R.R.; Jennings, G.K.; Bolotin, K.I. Graphene: Corrosion-inhibiting coating. ACS Nano 2012, 6, 1102–1108. [Google Scholar] [CrossRef] [PubMed]
- Zucchi, F.; Grassi, V.; Frignani, A.; Monticell, C.; Trabanelli, G. Electrochemical behaviour of a magnesium alloy containing rare earth elements. J. Appl. Electrochem. 2006, 36, 195–204. [Google Scholar] [CrossRef]
- Bunch, J.S.; Verbridge, S.S.; Alden, J.S.; Van Der Zande, A.M.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L. Impermeable atomic membranes from graphene sheets. Nano Lett. 2008, 8, 2458–2462. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Jiao, T.; Tang, Y.; Kong, J. Excellent Electromagnetic Wave Absorption of Iron-containing SiBCN Ceramics at 1158 K High-temperature. Adv. Eng. Mater. 2018, 1701168. [Google Scholar] [CrossRef]
- Song, Y.; He, L.H.; Zhang, X.F.; Liu, F.; Tian, N.; Tang, Y.; Kong, J. Highly Efficient Electromagnetic Wave Absorbing Metal-Free and Carbon-Rich Ceramics Derived from Hyperbranched Polycarbosilazanes. J. Phys. Chem. C 2017, 121, 24774–24785. [Google Scholar] [CrossRef]
- Luo, C.; Duan, W.; Yin, X.; Kong, J. Microwave Absorbing Polymer-Derived Ceramics from Cobalt Coordinated Poly (dimethylsilylene) diacetylenes. J. Phys. Chem. C 2016, 120, 18721–18732. [Google Scholar] [CrossRef]
- Kong, J.; Wang, M.; Zou, J.; An, L. Soluble and Meltable Hyperbranched Polyborosilazanes towards High-temperature Stable SiBCN Ceramics. ACS Appl. Mater. Interfaces 2015, 7, 6733–6744. [Google Scholar] [CrossRef] [PubMed]
- Leenaerts, O.; Partoens, B.; Peeters, F.M. Water on graphene: Hydrophobicity and dipole moment using density functional theory. Phys. Rev. B 2009, 79, 235440. [Google Scholar] [CrossRef]
Content of rGO | GO-APSA (g) | GO (g) | FAl (g) | Color |
---|---|---|---|---|
1% rGO-FAl powder | 0.1 | - | 10 | Silvery white |
2% rGO-FAl powder | 0.2 | - | 10 | Silvery white |
5% rGO-FAl powder | 0.5 | - | 10 | Silvery white |
5% rGO/FAl powder | - | 0.1 | 10 | Silvery white |
No. | PTMG-PU (wt. Part) | Crosslinker (wt. Part) | FAl (wt. Part) | 1% rGO-FAl (wt. Part) | 2% rGO-FAl (wt. Part) | 5% rGO-FAl (wt. Part) | 5% rGO/FAl (wt. Part) |
---|---|---|---|---|---|---|---|
1 | 47 | 13 | 40 | - | - | - | - |
2 | 47 | 13 | - | 40 | - | - | - |
3 | 47 | 13 | - | - | 40 | - | - |
4 | 47 | 13 | - | - | - | 40 | - |
5 | 47 | 13 | - | - | - | - | 40 |
No. | Filler Type | Infrared Emissivity (8~14 μm) | Surface Glossiness (60°) |
---|---|---|---|
1 | Pure flaky Al powder | 0.258 | 12.8 |
2 | 1% rGO-FAl powder | 0.247 | 9.7 |
3 | 2% rGO-FAl powder | 0.238 | 8.8 |
4 | 5% rGO-FAl powder | 0.243 | 6.7 |
5 | 5% rGO-FAl powder (the control composite) | 0.315 | 6.7 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, L.; Zhao, Y.; Xing, L.; Liu, P.; Zhang, Y.; Wang, Z. Low Infrared Emissivity Coating Based on Graphene Surface-Modified Flaky Aluminum. Materials 2018, 11, 1502. https://doi.org/10.3390/ma11091502
He L, Zhao Y, Xing L, Liu P, Zhang Y, Wang Z. Low Infrared Emissivity Coating Based on Graphene Surface-Modified Flaky Aluminum. Materials. 2018; 11(9):1502. https://doi.org/10.3390/ma11091502
Chicago/Turabian StyleHe, Lihua, Yan Zhao, Liying Xing, Pinggui Liu, Youwei Zhang, and Zhiyong Wang. 2018. "Low Infrared Emissivity Coating Based on Graphene Surface-Modified Flaky Aluminum" Materials 11, no. 9: 1502. https://doi.org/10.3390/ma11091502
APA StyleHe, L., Zhao, Y., Xing, L., Liu, P., Zhang, Y., & Wang, Z. (2018). Low Infrared Emissivity Coating Based on Graphene Surface-Modified Flaky Aluminum. Materials, 11(9), 1502. https://doi.org/10.3390/ma11091502