Microstructure and Deformation Response of TRIP-Steel Syntactic Foams to Quasi-Static and Dynamic Compressive Loads
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Processing
2.2. Testing Procedure and Fundamentals
3. Results
3.1. Characterization of the As-Sintered State
3.2. Mechanical Properties
3.3. Microstructure Investigations
4. Discussion
5. Conclusions
- (i)
- While the Fillite 106 cenospheres retain their initial shape, the S60HS glass microspheres undergo disintegration during processing accompanied with the formation of pre-cracked irregular glass inclusions and occurring chemical reactions with the surrounding steel matrix. Only the usage of cenospheres led to a strictly syntactic foam structure.
- (ii)
- The stress-strain response of the TRIP-steel syntactic foams under compression is indicated by a linear-elastic regime, a smooth transition to plastic yielding, a plateau-like region with a gradual increase in stress and a region of structure densification. Their mean stress level decreases with rising volume content of microspheres and porosity. Since the cenospheres offer an enhanced resistance against the plastic flow of the steel matrix, the AISI304L/Fillite 106 SFs exhibit a higher mean stress level (expressed by the yield stress and the plateau strength) and a higher energy absorption capability than the S60HS-containing variants.
- (iii)
- The deformation and failure behavior of the TRIP-steel syntactic foams is controlled by hardening/softening mechanisms and the strain-induced martensitic phase transformation (TRIP effect) of the austenitic steel matrix as well as the failure of the hollow particles or inclusions. Visible cracks within the secondary component were formed when achieving the elastic-plastic transition. At high strain levels collapsed cenospheres were rearranged and aligned to chain-like clusters within the shear-cross region of the specimen. Broken S60HS glass spheres and inclusions acted as initiators for matrix crack formation.
- (iv)
- Dynamic impact compression of the MMSFs causes an initial strengthening followed by softening of the steel matrix (main factor = strain-rate sensitivity of the matrix) at higher strains as a consequence of quasi-adiabatic heating, the gradual decrease in strain rate during plastic deformation and the enhanced degree of damage.
- (v)
- The -martensite phase evolution is affected by material composition, strain rate and deformation temperature. The highest ferromagnetic -martensite phase fractions were determined for the AISI 304L/S60HS SFs and the lowest for the pure TRIP-steel bulk material. Differences in matrix composition (varying C content), chemical reactions between S60HS particles and the steel matrix, and lower constraints against matrix deformation originating from the glass microspheres/inclusions should be the reasons for this behavior. The quasi-adiabatic sample heating under dynamic impact loading and at high strains initiates thermally-activated dislocation glide processes within the matrix which are finally preferred to -martensite formation.
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Balch, D.K.; O’Dwyer, J.G.; Davis, G.R.; Cady, C.M.; Gray, G.T., III; Dunand, D.C. Plasticity and damage in aluminum syntactic foams deformed under dynamic and quasi-static conditions. Mater. Sci. Eng. A Struct. 2005, 391, 408–417. [Google Scholar] [CrossRef]
- Balch, D.K.; Dunand, D.C. Load partitioning in aluminum syntactic foams containing ceramic microspheres. Acta Mater. 2006, 54, 1501–1511. [Google Scholar] [CrossRef]
- Rohatgi, P.K.; Gupta, N.; Schultz, B.F.; Luong, D.D. The Synthesis, Compressive Properties, and Applications of Metal Matrix Syntactic Foams. JOM 2011, 63, 36–42. [Google Scholar] [CrossRef]
- Daoud, A.; El-Khair, M.T.A.; Shenouda, A.Y.; Mohammed, E.; Rohatgi, P.K. Microstructure, tensile properties and electrochemical behavior of Pb alloy-45 vol.% fly ash microballoon composites. Mater. Sci. Eng. A Struct. 2009, 526, 225–234. [Google Scholar] [CrossRef]
- Weise, J.; Baumeister, J.; Ehinger, D.; Krüger, L.; Martin, U.; Junior, J.B.P. Investigation of processing, microstructure and mechanical behaviour of 304L TRIP steel foams produced by injection moulding. Proc. Mater. Sci. 2014, 4, 62–66. [Google Scholar] [CrossRef]
- Gupta, N.; Rohatgi, P.K. Metal Matrix Syntactic Foams: Processing, Microstructure, Properties and Applications; DEStech Publications, Inc.: Lancaster, PA, USA, 2014; ISBN 978-1932078831. [Google Scholar]
- Duarte, I.; Ferreira, J.M.F. Composite and Nanocomposite Metal Foams. Materials 2016, 9, 79. [Google Scholar] [CrossRef] [PubMed]
- Rohatgi, P.K.; Kim, J.K.; Gupta, N.; Alaraj, S.; Daoud, A.; Rohatgi, P.K. Compressive characteristics of A356/fly ash cenosphere composites synthesized by pressure infiltration technique. Compos. Part A Appl. 2006, 37, 430–437. [Google Scholar] [CrossRef]
- Mondal, D.P.; Das, S.; Jha, N. Dry sliding wear behaviour of aluminum syntactic foam. Mater. Des. 2009, 30, 2563–2568. [Google Scholar] [CrossRef]
- Rohatgi, P.K.; Gupta, N.; Alaraj, S. Thermal expansion of aluminum-fly ash cenosphere composites synthesized by pressure infiltration technique. J. Compos. Mater. 2006, 40, 1163–1174. [Google Scholar] [CrossRef]
- Jha, N.; Badkul, A.; Mondal, D.P.; Das, S.; Singh, M. Sliding wear behaviour of aluminum syntactic foam: A comparison with Al-10 wt % SiC composites. Tribol. Int. 2011, 44, 220–231. [Google Scholar] [CrossRef]
- Mondal, D.P.; Das, S.; Ramakrishnan, N.; Bhasker, K.U. Cenosphere filled aluminum syntactic foam made through stir-casting technique. Compos. Part. A Appl. 2009, 40, 279–288. [Google Scholar] [CrossRef]
- Adrien, J.; Maire, E.; Gimenez, N.; Sauvant-Moynot, V. Experimental study of the compression behaviour of syntactic foams by in situ X-ray tomography. Acta Mater. 2007, 55, 1667–1679. [Google Scholar] [CrossRef]
- Altenaiji, M.; Guan, Z.W.; Cantwell, W.J.; Zhao, Y.; Schleyer, G.K. Characterisation of aluminium matrix syntactic foams under drop weight impact. Mater. Des. 2014, 59, 296–302. [Google Scholar] [CrossRef]
- Zhao, Y.; Tao, X.F.; Xue, X. Manufacture and mechanical properties of metal matrix syntactic foams. In Proceedings of the Materials Science and Technology (MS&T’08), Pittsburgh, PA, USA, 5–9 October 2008; pp. 2607–2615. [Google Scholar]
- Peroni, L.; Scapin, M.; Avalle, M.; Weise, J.; Lehmhus, D. Dynamic mechanical behavior of syntactic iron foams with glass microspheres. Mater. Sci. Eng. A Struct. 2012, 552, 364–375. [Google Scholar] [CrossRef]
- Castro, G.; Nutt, S.R. Synthesis of syntactic steel foam using gravity-fed infiltration. Mater. Sci. Eng. A Struct. 2012, 553, 89–95. [Google Scholar] [CrossRef]
- Castro, G.; Nutt, S.R. Synthesis of syntactic steel foam using mechanical pressure infiltration. Mater. Sci. Eng. A Struct. 2012, 535, 274–280. [Google Scholar] [CrossRef]
- Weise, J.; Lehmhus, D.; Baumeister, J.; Kun, R.; Bayoumi, M.; Busse, M. Production and Properties of 316L Stainless Steel Cellular Materials and Syntactic Foams. Steel Res. Int. 2014, 85, 486–497. [Google Scholar] [CrossRef]
- Zhao, H.; Elnasri, I.; Abdennadher, S. An experimental study on the behaviour under impact loading of metallic cellular materials. Int. J. Mech. Sci. 2005, 47, 757–774. [Google Scholar] [CrossRef]
- Dou, Z.Y.; Jiang, L.T.; Wu, G.H.; Zhang, Q.; Xiu, Z.Y.; Chen, G.Q. High strain rate compression of cenosphere-pure aluminum syntactic foams. Scr. Mater. 2007, 57, 945–948. [Google Scholar] [CrossRef]
- Daoud, A. Effect of strain rate on compressive properties of novel Zn12Al-based composite foams containing hybrid pores. Mater. Sci. Eng. A Struct. 2009, 525, 7–17. [Google Scholar] [CrossRef]
- Shunmugasamy, V.C.; Gupta, N.; Nguyen, N.Q.; Coelho, P.G. Strain rate dependence of damage evolution in syntactic foams. Mater. Sci. Eng. A Struct. 2010, 527, 6166–6177. [Google Scholar] [CrossRef]
- Gupta, N.; Shunmugasamy, V.C. High strain rate compressive response of syntactic foams: Trends in mechanical properties and failure mechanisms. Mater. Sci. Eng. A Struct. 2011, 528, 7596–7605. [Google Scholar] [CrossRef]
- Luong, D.D.; Gupta, N.; Rohatgi, P.K. The High Strain Rate Compressive Response of Mg-Al Alloy/Fly Ash Cenosphere Composites. JOM 2011, 63, 48–52. [Google Scholar] [CrossRef]
- Goel, M.D.; Peroni, M.; Solomos, G.; Mondal, D.P.; Matsagar, V.A.; Gupta, A.K.; Larcher, M.; Marburg, S. Dynamic compression behavior of cenosphere aluminum alloy syntactic foam. Mater. Des. 2012, 42, 418–423. [Google Scholar] [CrossRef]
- Peroni, L.; Scapin, M.; Avalle, M.; Weise, J.; Lehmhus, D.; Baumeister, J.; Busse, M. Syntactic Iron Foams—On Deformation Mechanisms and Strain-Rate Dependence of Compressive Properties. Adv. Eng. Mater. 2012, 14, 909–918. [Google Scholar] [CrossRef]
- Santa Maria, J.A.; Schultz, B.F.; Ferguson, J.B.; Gupta, N.; Rohatgi, P.K. Effect of hollow sphere size and size distribution on the quasi-static and high strain rate compressive properties of Al-A380-Al2O3 syntactic foams. J. Mater. Sci. 2014, 49, 1267–1278. [Google Scholar] [CrossRef]
- Lehmhus, D.; Weise, J.; Baumeister, J.; Peroni, L.; Scapin, M.; Fichera, C.; Avalle, M.; Busse, M. Quasi-static and dynamic mechanical performance of glass microsphere- and cenosphere-based 316L syntactic foams. Proc. Mater. Sci. 2014, 4, 364–368. [Google Scholar] [CrossRef]
- Martin, U.; Ehinger, D.; Krüger, L.; Martin, S.; Mottitschka, T.; Weigelt, C.; Aneziris, C.G.; Herrmann, M. Cellular Energy Absorbing TRIP-Steel/Mg-PSZ Composite: Honeycomb Structures Fabricated by a New Extrusion Powder Technology. Adv. Mater. Sci. Eng. 2010. [Google Scholar] [CrossRef]
- Aneziris, C.G.; Berek, H.; Hasterok, M.; Biermann, H.; Wolf, S.; Krüger, L. Novel TRIP-Steel/Mg-PSZ Composite-Open Cell Foam Structures for Energy Absorption. Adv. Eng. Mater. 2010, 12, 197–204. [Google Scholar] [CrossRef]
- Ehinger, D.; Krüger, L.; Martin, U.; Weigelt, C.; Aneziris, C.G. Strain Rate Effect on Material Behavior of TRIP-Steel/Zirconia Honeycomb Structures. Steel Res. Int. 2011, 82, 1048–1056. [Google Scholar] [CrossRef]
- Ehinger, D.; Krüger, L.; Martin, U.; Weigelt, C.; Aneziris, C.G. Deformation Mechanisms and Martensitic Phase Transformation in TRIP-Steel/Zirconia Honeycombs. Steel Res. Int. 2012, 83, 565–575. [Google Scholar] [CrossRef]
- Weigelt, C.; Aneziris, C.G.; Berek, H.; Ehinger, D.; Martin, U. Martensitic Phase Transformation in TRIP-Steel/Mg-PSZ Honeycomb Composite Materials on Mechanical Load. Adv. Eng. Mater. 2012, 14, 53–60. [Google Scholar] [CrossRef]
- Product information, 3M ™ Glass Bubbles K Series, S Series and iM Series. Available online: http://multimedia.3m.com/mws/media/91049O/3m-glass-bubbles-k-s-and-im-series.pdf (accessed on 23 April 2018).
- Fillite Product Overview—Standard Range. Available online: http://www.omya.com/Documents/Fillite/ProductOverview_StandardRange.pdf (accessed on 22 September 2016).
- German Standard DIN 50134. Testing of Metallic Materials—Compression Test of Metallic Cellular Materials; Deutsches Institut für Normung e.V.: Berlin, Germany, 2008. [Google Scholar]
- International Organization for Standardization. Mechanical Testing of Metals—Ductility Testing—Compression Test for Porous and Cellular Metals; ISO 13314:2011; International Organization for Standardization: Geneva, Switzerland, 2011. [Google Scholar]
- Mangonon, P.L.; Thomas, G. Structure and Properties of Thermal-Mechanically Treated 304 Stainless Steel. Metall. Trans. 1970, 1, 1587–1594. [Google Scholar] [CrossRef]
- Childress, J.; Liou, S.H.; Chien, C.L. Ferromagnetism in Metastable 304-Stainless Steel with Bcc Structure. J. Appl. Phys. 1988, 64, 6059–6061. [Google Scholar] [CrossRef]
- Ding, J.; Huang, H.; McCormick, P.G.; Street, R. Magnetic-Properties of Martensite Austenite Mixtures in Mechanically Milled 304-Stainless-Steel. J. Magn. Magn. Mater. 1995, 139, 109–114. [Google Scholar] [CrossRef]
- Mumtaz, K.; Takahashi, S.; Echigoya, J.; Zhang, L.; Kamada, Y.; Sato, M. Temperature dependence of martensitic transformation in austenitic stainless steel. J. Mater. Sci. Lett. 2003, 22, 423–427. [Google Scholar] [CrossRef]
- Luong, D.; Lehmhus, D.; Gupta, N.; Weise, J.; Bayoumi, M. Structure and Compressive Properties of Invar-Cenosphere Syntactic Foams. Materials 2016, 9. [Google Scholar] [CrossRef] [PubMed]
- Kruth, J.P.; Bartscher, M.; Carmignato, S.; Schmitt, R.; De Chiffre, L.; Weckenmann, A. Computed tomography for dimensional metrology. CIRP Ann. Manuf. Technol. 2011, 60, 821–842. [Google Scholar] [CrossRef]
- Kiser, M.; He, M.Y.; Zok, F.W. The mechanical response of ceramic microballoon reinforced aluminum matrix composites under compressive loading. Acta Mater. 1999, 47, 2685–2694. [Google Scholar] [CrossRef]
- Peroni, L.; Scapin, M.; Fichera, C.; Lehmhus, D.; Weise, J.; Baumeister, J.; Avalle, M. Investigation of the mechanical behaviour of AISI 316L stainless steel syntactic foams at different strain-rates. Compos. Part B Eng. 2014, 66, 430–442. [Google Scholar] [CrossRef]
- Orbulov, I.N.; Ginsztler, J. Compressive characteristics of metal matrix syntactic foams. Compos. Part A Appl. 2012, 43, 553–561. [Google Scholar] [CrossRef] [Green Version]
- Luong, D.D.; Strbik, O.M., III; Hammond, V.H.; Gupta, N.; Choc, K. Development of high performance lightweight aluminum alloy/SiC hollow sphere syntactic foams and compressive characterization at quasi-static and high strain rates. J. Alloy. Compd. 2013, 550, 412–422. [Google Scholar] [CrossRef]
- Rivero, G.A.R.; Schultz, B.F.; Ferguson, J.B.; Gupta, N.; Rohatgi, P.K. Compressive properties of Al-A206/SiC and Mg-AZ91/SiC syntactic foams. J. Mater. Res. 2013, 28, 2426–2435. [Google Scholar] [CrossRef]
- Ashby, M.; Shercliff, H.; Cebon, D. Materials—Engineering, Science, Processing and Design; Butterworth-Heinemann: Oxford, UK, 2007; ISBN 9780080982816. [Google Scholar]
- Luong, D.D.; Shunmugasamy, V.C.; Gupta, N.; Lehmhus, D.; Weise, J.; Baumeister, J. Quasi-static and high strain rates compressive response of iron and Invar matrix syntactic foams. Mater. Des. 2015, 66, 516–531. [Google Scholar] [CrossRef]
- Daoud, A.; El-Khair, M.T.A.; Abdel-Aziz, M.; Rohatgi, P. Fabrication, microstructure and compressive behavior of ZC63 Mg-microballoon foam composites. Compos. Sci. Technol. 2007, 67, 1842–1853. [Google Scholar] [CrossRef]
- Daoud, A. Effect of fly ash addition on the structure and compressive properties of 4032-fly ash particle composite foams. J. Alloy. Compd. 2009, 487, 618–625. [Google Scholar] [CrossRef]
- Zhang, L.P.; Zhao, Y.Y. Mechanical response of Al matrix syntactic foams produced by pressure infiltration casting. J. Compos. Mater. 2007, 41, 2105–2117. [Google Scholar] [CrossRef]
- Tao, X.F.; Zhao, Y.Y. Compressive behavior of Al matrix syntactic foams toughened with Al particles. Scr. Mater. 2009, 61, 461–464. [Google Scholar] [CrossRef]
- Rohatgi, P.K.; Daoud, A.; Schultz, B.F.; Puri, T. Microstructure and mechanical behavior of die casting AZ91D-Fly ash cenosphere composites. Compos. Part A Appl. 2009, 40, 883–896. [Google Scholar] [CrossRef]
- Sudarshan; Surappa, M.K. Synthesis of fly ash particle reinforced A356 Al composites and their characterization. Mater. Sci. Eng. A Struct. 2008, 480, 117–124. [Google Scholar] [CrossRef]
- Xue, X.B.; Zhao, Y.Y.; Kearns, V.; Williams, R.L. Mechanical and biological properties of titanium syntactic foams. In Proceedings of the TMS 2010 139th Annual Meeting and Exhibition, Seattle, WA, USA, 14–18 February 2010; John Wily & Sons: Seattle, WA, USA, 2010; pp. 129–135. [Google Scholar]
- Daoud, A. Synthesis and characterization of novel ZnAl22 syntactic foam composites via casting. Mater. Sci. Eng. A Struct. 2008, 488, 281–295. [Google Scholar] [CrossRef]
- Weise, J.; Yezerska, O.; Busse, M.; Haesche, M.; Zanetti-Bueckmann, V.; Schmitt, M. Production and properties of micro-porous glas bubble zinc and aluminium composites. Materialwiss. Werkstofftech. 2007, 38, 901–906. [Google Scholar] [CrossRef]
- Ferguson, J.B.; Santa Maria, J.A.; Schultz, B.F.; Rohatgi, P.K. Al-Al2O3 syntactic foams-Part II: Predicting mechanical properties of metal matrix syntactic foams reinforced with ceramic spheres. Mater. Sci. Eng. A Struct. 2013, 582, 423–432. [Google Scholar] [CrossRef]
- Szlancsik, A.; Katona, B.; Májlinger, K.; Orbulov, I.N. Compressive Behavior and Microstructural Characteristics of Iron Hollow Sphere Filled Aluminum Matrix Syntactic Foams. Materials 2015, 8, 7926–7937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neville, B.P.; Rabiei, A. Composite metal foams processed through powder metallurgy. Mater. Des. 2008, 29, 388–396. [Google Scholar] [CrossRef]
- Rabiei, A.; Vendra, L.J. A comparison of composite metal foam’s properties and other comparable metal foams. Mater. Lett. 2009, 63, 533–536. [Google Scholar] [CrossRef]
- Martin, S.; Richter, S.; Decker, S.; Martin, U.; Krüger, L.; Rafaja, D. Reinforcing Mechanism of Mg-PSZ Particles in Highly-Alloyed TRIP Steel. Steel Res. Int. 2011, 82, 1133–1140. [Google Scholar] [CrossRef]
- Ehinger, D.; Krüger, L.; Martin, U.; Weigelt, C.; Aneziris, C.G. Buckling and crush resistance of high-density TRIP-steel and TRIP-matrix composite honeycombs to out-of-plane compressive load. Int. J. Solids Struct. 2015, 66, 207–217. [Google Scholar] [CrossRef]
- Licitra, L.; Luong, D.D.; Strbik, O.M., III; Gupta, N. Dynamic properties of alumina hollow particle filled aluminum alloy A356 matrix syntactic foams. Mater. Des. 2015, 66, 504–515. [Google Scholar] [CrossRef]
- Bao, G.; Lin, Z. High strain rate deformation in particle reinforced metal matrix composites. Acta Mater. 1996, 44, 1011–1019. [Google Scholar] [CrossRef]
- Li, Y.; Ramesh, K.T. Influence of particle volume fraction, shape, and aspect ratio on the behavior of particle-reinforced metal-matrix composites at high rates of strain. Acta Mater. 1998, 46, 5633–5646. [Google Scholar] [CrossRef]
- Schaeffler, A.L. Constitution Diagram for Stainless-Steel Weld Metal. 2. Schaeffler Diagram. Met. Prog. 1974, 106, 227. [Google Scholar]
- Brofman, P.J.; Ansell, G.S. Effect of Carbon on Stacking-Fault Energy of Austenitic Stainless-Steels. Metall. Trans. A 1978, 9, 879–880. [Google Scholar] [CrossRef]
- Schumann, H. Einfluß der Stapelfehlerenergie auf den kristallographischen Umgitterungsmechanismus der g/a-Umwandlung in hochlegierten Stählen. Kristall Technik 1974, 9, 1141–1152. [Google Scholar] [CrossRef]
Material Property | 3MTM S60HS | Omya Fillite® FG 106 |
---|---|---|
Sphere density (g·cm−3) | 0.570–0.630 | 0.600–0.850 |
Sphere size (µm) | 15 (), 30 (), 50 () | 5.0–106 |
Transient temperature (°C) | 600 (softening point) | 1200–1350 (melting point) |
Isostatic crush strength (bar) | 1241 | 103–207 |
Component elements of shell | SiO2 (70–80%), B2O3 (2–6%), Na2O (3–8%), CaO (8–15%) | Al2O3 (27–33%), SiO2 (55–65%), Fe2O3 (≤6%) |
AISI 304L | AISI 304L/S60HS | AISI 304L/Fillite 106 | |||||
---|---|---|---|---|---|---|---|
T0 | T2G | T4G | T6G | T2C | T4C | T6C | |
vol % spheres | 0 | 20 | 40 | 60 | 20 | 40 | 60 |
wt % spheres | 0 | 1.84 | 4.76 | 10.11 | 1.90 | 4.91 | 10.41 |
wt % matrix | 100 | 98.16 | 95.24 | 89.89 | 98.10 | 95.09 | 89.59 |
Batch | Density/g·cm−3 | C-Content in wt % |
---|---|---|
304L-powder | - | 0.024 * |
T0 | 7.42 | 0.067 |
T2C | 6.60 | - |
T4C | 5.73 | 0.042 |
T6C | 4.58 | 0.023 |
T2G | 6.39 | - |
T4G | 5.27 | 0.013 |
T6G | 4.25 | 0.015 |
Batch | Strain Rate/s−1 | /MPa | /MPa | SEA/kJ·kg−1 | |||
---|---|---|---|---|---|---|---|
T0 | 0.01 200 | 334 450 | ±3 ±9 | 1487 1398 | ±15 ±4 | 55.3 68.9 | ±0.1 ±0.6 |
T2C | 0.01 200 | 250 379 | ±2 ±15 | 1163 1131 | ±3 ±9 | 49.2 52.2 | ±0.4 ±5.4 |
T4C | 0.01 200 | 221 387 | ±8 ±8 | 891 913 | ±5 ±2 | 44.9 53.8 | ±0.1 ±0.6 |
T6C | 0.01 200 | 185 296 | ±5 ±20 | 533 529 | ±11 ±1 | 38.1 40.8 | ±0.1 ±0.2 |
T2G | 0.01 200 | 242 295 | ±3 ±11 | 1106 1012 | ±4 ±10 | 48.8 51.2 | ±0.2 ±0.9 |
T4G | 0.01 200 | 142 165 | ±4 ±6 | 726 710 | ±7 ±6 | 40.2 43.5 | ±0.3 ±0.7 |
T6G | 0.01 200 | 89 180 | ±8 ±21 | 344 537 | ±12 ±10 | 26.5 47.2 | ±0.4 ±2.7 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ehinger, D.; Weise, J.; Baumeister, J.; Funk, A.; Waske, A.; Krüger, L.; Martin, U. Microstructure and Deformation Response of TRIP-Steel Syntactic Foams to Quasi-Static and Dynamic Compressive Loads. Materials 2018, 11, 656. https://doi.org/10.3390/ma11050656
Ehinger D, Weise J, Baumeister J, Funk A, Waske A, Krüger L, Martin U. Microstructure and Deformation Response of TRIP-Steel Syntactic Foams to Quasi-Static and Dynamic Compressive Loads. Materials. 2018; 11(5):656. https://doi.org/10.3390/ma11050656
Chicago/Turabian StyleEhinger, David, Jörg Weise, Joachim Baumeister, Alexander Funk, Anja Waske, Lutz Krüger, and Ulrich Martin. 2018. "Microstructure and Deformation Response of TRIP-Steel Syntactic Foams to Quasi-Static and Dynamic Compressive Loads" Materials 11, no. 5: 656. https://doi.org/10.3390/ma11050656