All-in-One Gel-Based Electrochromic Devices: Strengths and Recent Developments
Abstract
:1. Introduction
2. Gel and Semisolid Electrolytes in ECDs
3. Processability of All-in-One Gel-Based ECDs
4. Durability of All-in-One Gel-Based ECDs
5. Suitability of All-in-One Gel-Based ECDs for Flexible Substrates
6. Low-Energy-Driven All-in-One Gel-Based ECDs
7. Stabilization of Species in All-in-One Gel-Based ECDs
7.1. Stabilization of Radical-Cation in Aryl-Substituted Viologens
7.2. Stabilization of Di-reduced Species
7.3. Stabilization of Radical-Cation Dimer
8. Versatility of All-in-One Gel-Based Formulations
9. All-in-One Gel-Based EC Systems Comprising More Than One EC Material
10. Patterned ECDs Based on All-in-One Gel-Type EC Systems
11. Conclusions and Outlook
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mortimer, R.J.; Dyer, A.L.; Reynolds, J.R. Electrochromic organic and polymeric materials for display applications. Displays 2006, 27, 2–18. [Google Scholar] [CrossRef]
- Bach, U.; Corr, D.; Lupo, D.; Pichot, F.; Ryan, M. Nanomaterials-based electrochromics for paper-quality displays. Adv. Mater. 2002, 14, 845–848. [Google Scholar] [CrossRef]
- Tonar, W.L.; Byker, H.J.; Siegrist, K.E.; Anderson, J.S.; Ash, K.L. Electrochromic Layer and Devices Comprising Same. U.S. Patent 5,928,572, 27 July 1999. [Google Scholar]
- Byker, H.J. Single-Compartment, Self-Erasing, Solution-Phase Electrochromic Devices, Solutions for Use Therein, and Uses Thereof. U.S. Patent 4,902,108, 20 February 1990. [Google Scholar]
- Lampert, C.M. Chromogenic smart materials. Mater. Today 2004, 7, 28–35. [Google Scholar] [CrossRef]
- Gillaspie, D.T.; Tenent, R.C.; Dillon, A.C. Metal-oxide films for electrochromic applications: Present technology and future directions. J. Mater. Chem. 2010, 20, 9585–9592. [Google Scholar] [CrossRef]
- Llordes, A.; Garcia, G.; Gazquez, J.; Milliron, D.J. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 2013, 500, 323–326. [Google Scholar] [CrossRef] [PubMed]
- Loonen, R.C.G.M.; Trčka, M.; Cóstola, D.; Hensen, J.L.M. Climate adaptive building shells: State-of-the-art and future challenges. Renew. Sustain. Energy Rev. 2013, 25, 483–493. [Google Scholar] [CrossRef]
- Granqvist, C.G. Handbook of Inorganic Electrochromic Materials; Elsevier Science B.V.: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Monk, P.M.S.; Mortimer, R.J.; Rosseinsky, D.R. Metal oxides. In Electrochromism; Wiley-VCH Verlag GmbH: Berlin, Germany, 2007; pp. 59–92. [Google Scholar]
- Mortimer, R.J. Electrochromic materials. Ann. Rev. Mater. Res. 2011, 41, 241–268. [Google Scholar] [CrossRef]
- Piccolo, A. Thermal performance of an electrochromic smart window tested in an environmental test cell. Energy Build. 2010, 42, 1409–1417. [Google Scholar] [CrossRef]
- Lee, E.S.; DiBartolomeo, D.L.; Selkowitz, S.E. Daylighting control performance of a thin-film ceramic electrochromic window: Field study results. Energy Build. 2006, 38, 30–44. [Google Scholar] [CrossRef]
- Baetens, R.; Jelle, B.P.; Gustavsen, A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Sol. Energy Mater. Sol. Cells 2010, 94, 87–105. [Google Scholar] [CrossRef]
- Sage Electrochromics Inc. Available online: http://sageglass.com (accessed on 8 March 2018).
- View inc. Available online: http://viewglass.com (accessed on 8 March 2018).
- Garnier, F.; Tourillon, G.; Gazard, M.; Dubois, J.C. Organic conducting polymers derived from substituted thiophenes as electrochromic material. J. Electroanal. Chem. Interfacial Electrochem. 1983, 148, 299–303. [Google Scholar] [CrossRef]
- Diaz, A.F.; Logan, J.A. Electroactive polyaniline films. J. Electroanal. Chem. Interfacial Electrochem. 1980, 111, 111–114. [Google Scholar] [CrossRef]
- Mortimer, R.J. Organic electrochromic materials. Electrochim. Acta 1999, 44, 2971–2981. [Google Scholar] [CrossRef]
- Bulloch, R.H.; Kerszulis, J.A.; Dyer, A.L.; Reynolds, J.R. An electrochromic painter’s palette: Color mixing via solution co-processing. ACS Appl. Mater. Interfaces 2015, 7, 1406–1412. [Google Scholar] [CrossRef] [PubMed]
- Byker, H.J. Variable Reflectance Motor Vehicle Mirror. U.S. Patent 5,128,799, 7 July 1992. [Google Scholar]
- Varaprasad, D.V.; Habibi, H.; Mccabe, I.A.; Lynam, N.R.; Zhao, M.; Dornan, C.A. Electrochromic Mirrors and Devices. U.S. Patent 5,724,187, 3 March 1995. [Google Scholar]
- Kucharski, M.; Lukaszewicz, T.; Mrozek, P. New electrolyte for electrochromic devices. Opto-Electron. Rev. 2004, 12, 175–180. [Google Scholar]
- Sekhon, S.S.; Agnihotry, S.A. Solvent effect on gel electrolytes containing lithium salts. Solid State Ion. 2000, 136–137, 1189–1192. [Google Scholar] [CrossRef]
- Stefan, Å. Electrochromic materials for display applications: An introduction. J. New Mater. Electrochem. Syst. 2001, 4, 173–179. [Google Scholar]
- Agnihotry, S.A.; Pradeep; Sekhon, S.S. Li+ conducting gel electrolyte for electrochromic windows. Solid State Ion. 2000, 136–137, 573–576. [Google Scholar] [CrossRef]
- Bonhôte, P.; Gogniat, E.; Campus, F.; Walder, L.; Grätzel, M. Nanocrystalline electrochromic displays. Displays 1999, 20, 137–144. [Google Scholar] [CrossRef]
- Pozo-Gonzalo, C.; Salsamendi, M.; Viñuales, A.; Pomposo, J.A.; Grande, H.-J. Highly transparent electrochromic plastic device that changes to purple and to blue by increasing the potential. Sol. Energy Mater. Sol. Cells 2009, 93, 2093–2097. [Google Scholar] [CrossRef]
- Gonzalo, C.P.; Garcia, R.M.; Telleria, M.S.; Alonso, J.A.P.; Telleria, H.J.G. Viologen-Based Electrochromic Compositions which can be Formulated and Applied at Room Temperature. U.S. Patent Application 12/865,669, 6 Januray 2011. [Google Scholar]
- Pozo, G.C.; Marcilla, G.R.; Salsamendi, T.M.; Pomposo, A.J.A.; Grande, T.H.J. Electrochromic Compositions Containing Viologens, which can be Formulated and Used at Ambient Temperature. EP2239626 B1, 22 August 2012. [Google Scholar]
- Su, L.; Xiao, Z.; Lu, Z. All solid-state electrochromic device with pmma gel electrolyte. Mater. Chem. Phys. 1998, 52, 180–183. [Google Scholar] [CrossRef]
- Su, L.; Wang, H.; Lu, Z. All-solid-state electrochromic window of prussian blue and electrodeposited WO3 film with poly(ethylene oxide) gel electrolyte. Mater. Chem. Phys. 1998, 56, 266–270. [Google Scholar] [CrossRef]
- Lianyong, S.; Hong, W.; Zuhong, L. All solid-state electrochromic smart window of electrodeposited WO3 and prussion blue film with pvc gel electrolyte. Supramol. Sci. 1998, 5, 657–659. [Google Scholar]
- Su, L.; Xiao, Z.; Lu, Z. All solid-state electrochromic window of electrodeposited WO3 and prussian blue film with pvc gel electrolyte. Thin Solid Films 1998, 320, 285–289. [Google Scholar] [CrossRef]
- Cinnsealach, R.; Boschloo, G.; Nagaraja Rao, S.; Fitzmaurice, D. Electrochromic windows based on viologen-modified nanostructured TiO2 films. Sol. Energy Mater. Sol. Cells 1998, 55, 215–223. [Google Scholar] [CrossRef]
- Armand, M. Polymer solid electrolytes—An overview. Solid State Ion. 1983, 9–10, 745–754. [Google Scholar] [CrossRef]
- Nguyen, C.A.; Argun, A.A.; Hammond, P.T.; Lu, X.; Lee, P.S. Layer-by-layer assembled solid polymer electrolyte for electrochromic devices. Chem. Mater. 2011, 23, 2142–2149. [Google Scholar] [CrossRef]
- Mecerreyes, D.; Marcilla, R.; Ochoteco, E.; Grande, H.; Pomposo, J.A.; Vergaz, R.; Sánchez Pena, J.M. A simplified all-polymer flexible electrochromic device. Electrochim. Acta 2004, 49, 3555–3559. [Google Scholar] [CrossRef]
- Liu, J.; Coleman, J.P. Nanostructured metal oxides for printed electrochromic displays. Mater. Sci. Eng. A 2000, 286, 144–148. [Google Scholar] [CrossRef]
- Granqvist, C.-G. Electrochromic materials: Out of a niche. Nat. Mater. 2006, 5, 89–90. [Google Scholar] [CrossRef] [PubMed]
- Aubert, P.-H.; Argun, A.A.; Cirpan, A.; Tanner, D.B.; Reynolds, J.R. Microporous patterned electrodes for color-matched electrochromic polymer displays. Chem. Mater. 2004, 16, 2386–2393. [Google Scholar] [CrossRef]
- Marks, Z.D.; Glugla, D.; Friedlein, J.T.; Shaheen, S.E.; McLeod, R.R.; Kahook, M.Y.; Nair, D.P. Switchable diffractive optics using patterned pedot:Pss based electrochromic thin-films. Org. Electron. 2016, 37, 271–279. [Google Scholar] [CrossRef]
- Lianyong, S.; Jinghuai, F.; Zuhong, L. All-solid-state electrochromic window of electrodeposited WO3 and prussian blue with poly(ethylene oxide) gel electrolyte. Jpn. J. Appl. Phys. 1997, 36, 5747–5750. [Google Scholar]
- Vidinha, P.; Lourenco, N.M.T.; Pinheiro, C.; Bras, A.R.; Carvalho, T.; Santos-Silva, T.; Mukhopadhyay, A.; Romao, M.J.; Parola, J.; Dionisio, M.; et al. Ion jelly: A tailor-made conducting material for smart electrochemical devices. Chem. Commun. 2008, 5842–5844. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.J.; Panchal, C.J.; Desai, M.S.; Mehta, P.K. An investigation of the insertion of the cations h+, na+, k+ on the electrochromic properties of the thermally evaporated WO3 thin films grown at different substrate temperatures. Mater. Chem. Phys. 2010, 124, 884–890. [Google Scholar] [CrossRef]
- Yamada, Y.; Tabata, K.; Yashima, T. The character of WO3 film prepared with rf sputtering. Sol. Energy Mater. Sol. Cells 2007, 91, 29–37. [Google Scholar] [CrossRef]
- Zhou, D.; Xie, D.; Shi, F.; Wang, D.H.; Ge, X.; Xia, X.H.; Wang, X.L.; Gu, C.D.; Tu, J.P. Crystalline/amorphous tungsten oxide core/shell hierarchical structures and their synergistic effect for optical modulation. J. Colloid Interface Sci. 2015, 460, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Hajzeri, M.; Colovic, M.; Vuk, A.S.; Posset, U.; Orel, B. Semi-solid gel electrolytes for electrochromic devices. Mater. Technol. 2011, 45, 433–438. [Google Scholar]
- Hagfeldt, A.; Vlachopoulos, N.; Grätzel, M. Fast electrochromic switching with nanocrystalline oxide semiconductor films. J. Electrochem. Soc. 1994, 141, L82–L84. [Google Scholar] [CrossRef]
- Coleman, J.P.; Lynch, A.T.; Madhukar, P.; Wagenknecht, J.H. Antimony-doped tin oxide powders:: Electrochromic materials for printed displays. Sol. Energy Mater. Sol. Cells 1999, 56, 375–394. [Google Scholar] [CrossRef]
- Coleman, J.P.; Freeman, J.J.; Madhukar, P.; Wagenknecht, J.H. Electrochromism of nanoparticulate-doped metal oxides: Optical and material properties. Displays 1999, 20, 145–154. [Google Scholar] [CrossRef]
- Campus, F.; Bonhôte, P.; Grätzel, M.; Heinen, S.; Walder, L. Electrochromic devices based on surface-modified nanocrystalline TiO2 thin-film electrodes. Sol. Energy Mater. Sol. Cells 1999, 56, 281–297. [Google Scholar] [CrossRef]
- Cummins, D.; Boschloo, G.; Ryan, M.; Corr, D.; Rao, S.N.; Fitzmaurice, D. Ultrafast electrochromic windows based on redox-chromophore modified nanostructured semiconducting and conducting films. J. Phys. Chem. B 2000, 104, 11449–11459. [Google Scholar] [CrossRef]
- Kim, Y.J.; Jeong, H.K.; Seo, J.K.; Chai, S.Y.; Kim, Y.S.; Lim, G.I.; Cho, M.H.; Lee, I.-M.; Choi, Y.S.; Lee, W.I. Effect of TiO2 particle size on the performance of viologen-anchored TiO2 electrochromic device. J. Nanosci. Nanotechnol. 2007, 7, 4106–4110. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Seo, J.K.; Kim, Y.J.; Jeong, H.K.; Lim, G.I.; Choi, Y.S.; Lee, W.I. Formation of ultrafast-switching viologen-anchored TiO2 electrochromic device by introducing sb-doped SnO2 nanoparticles. Sol. Energy Mater. Sol. Cells 2009, 93, 2108–2112. [Google Scholar] [CrossRef]
- Bhandari, S.; Deepa, M.; Srivastava, A.K.; Lakshmikumar, S.T.; RamaKant. Electrochromic response, structure optimization and ion transfer behavior in viologen adsorbed titanium oxide films. Solid State Ion. 2009, 180, 41–49. [Google Scholar] [CrossRef]
- Vlachopoulos, N.; Nissfolk, J.; Möller, M.; Briançon, A.; Corr, D.; Grave, C.; Leyland, N.; Mesmer, R.; Pichot, F.; Ryan, M.; et al. Electrochemical aspects of display technology based on nanostructured titanium dioxide with attached viologen chromophores. Electrochim. Acta 2008, 53, 4065–4071. [Google Scholar] [CrossRef]
- Cinnsealach, R.; Boschloo, G.; Nagaraja Rao, S.; Fitzmaurice, D. Coloured electrochromic windows based on nanostructured TiO2 films modified by adsorbed redox chromophores. Sol. Energy Mater. Sol. Cells 1999, 57, 107–125. [Google Scholar] [CrossRef]
- Möller, M.; Asaftei, S.; Corr, D.; Ryan, M.; Walder, L. Switchable electrochromic images based on a combined top–down bottom–up approach. Adv. Mater. 2004, 16, 1558–1562. [Google Scholar] [CrossRef]
- Pechy, P.; Rotzinger, F.P.; Nazeeruddin, M.K.; Kohle, O.; Zakeeruddin, S.M.; Humphry-Baker, R.; Gratzel, M. Preparation of phosphonated polypyridyl ligands to anchor transition-metal complexes on oxide surfaces: Application for the conversion of light to electricity with nanocrystalline TiO2 films. J. Chem. Soc. Chem. Commun. 1995, 65–66. [Google Scholar] [CrossRef]
- Zakeeruddin, S.M.; Nazeeruddin, M.K.; Pechy, P.; Rotzinger, F.P.; Humphry-Baker, R.; Kalyanasundaram, K.; Grätzel, M.; Shklover, V.; Haibach, T. Molecular engineering of photosensitizers for nanocrystalline solar cells: Synthesis and characterization of ru dyes based on phosphonated terpyridines. Inorg. Chem. 1997, 36, 5937–5946. [Google Scholar] [CrossRef] [PubMed]
- Bonhôte, P.; Gogniat, E.; Grätzel, M.; Ashrit, P.V. Novel electrochromic devices based on complementary nanocrystalline TiO2 and WO3 thin films. Thin Solid Films 1999, 350, 269–275. [Google Scholar] [CrossRef]
- Kao, S.-Y.; Kung, C.-W.; Chen, H.-W.; Hu, C.-W.; Ho, K.-C. An electrochromic device based on all-in-one polymer gel through in-situ thermal polymerization. Sol. Energy Mater. Sol. Cells 2016, 145, 61–68. [Google Scholar] [CrossRef]
- Kao, S.-Y.; Lu, H.-C.; Kung, C.-W.; Chen, H.-W.; Chang, T.-H.; Ho, K.-C. Thermally cured dual functional viologen-based all-in-one electrochromic devices with panchromatic modulation. ACS Appl. Mater. Interfaces 2016, 8, 4175–4184. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.-W.; Lee, K.-M.; Chen, K.-C.; Chang, L.-C.; Shen, K.-Y.; Lai, S.-C.; Kuo, T.-H.; Hsu, C.-Y.; Huang, L.-M.; Vittal, R.; et al. High contrast all-solid-state electrochromic device with 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), heptyl viologen, and succinonitrile. Sol. Energy Mater. Sol. Cells 2012, 99, 135–140. [Google Scholar] [CrossRef]
- Cospito, S.; De Simone, B.C.; Beneduci, A.; Imbardelli, D.; Chidichimo, G. Novel electrochromic gel with high optical contrast in the visible and near-infrared. Mater. Chem. Phys. 2013, 140, 431–434. [Google Scholar] [CrossRef]
- Agnihotry, S.A.; Pradeep, P.; Sekhon, S.S. Pmma based gel electrolyte for EC smart windows. Electrochim. Acta 1999, 44, 3121–3126. [Google Scholar] [CrossRef]
- Sekhon, S.S.; Arora, N.; Agnihotry, S.A. Pan-based gel electrolyte with lithium salts. Solid State Ion. 2000, 136–137, 1201–1204. [Google Scholar] [CrossRef]
- Thakur, V.K.; Ding, G.; Ma, J.; Lee, P.S.; Lu, X. Hybrid materials and polymer electrolytes for electrochromic device applications. Adv. Mater. 2012, 24, 4071–4096. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Zhang, H.; Li, N.; Tong, Z.; Wang, J.; Zhao, J.; Li, Y. A rapid-response electrochromic device with significantly enhanced electrochromic performance. RSC Adv. 2015, 5, 803–806. [Google Scholar] [CrossRef]
- Jeong, J.; Kumar, R.S.; Naveen, M.; Son, Y.-A. Synthesis and characterization of triphenylamine-based polymers and their application towards solid-state electrochromic cells. RSC Adv. 2016, 6, 78984–78993. [Google Scholar] [CrossRef]
- Tahtali, G.; Has, Z.; Doyranli, C.; Varlikli, C.; Koyuncu, S. Solution processable neutral state colourless electrochromic devices: Effect of the layer thickness on the electrochromic performance. J. Mater. Chem. C 2016, 4, 10090–10094. [Google Scholar] [CrossRef]
- Silva, M.M.; Barbosa, P.C.; Rodrigues, L.C.; Gonçalves, A.; Costa, C.; Fortunato, E. Gelatin in electrochromic devices. Opt. Mater. 2010, 32, 719–722. [Google Scholar] [CrossRef]
- De Oliveira, S.C.; de Morais, L.C.; da Silva Curvelo, A.A.; Torresib, R.M. An organic aqueous gel as electrolyte for application in electrochromic devices based in bismuth electrodeposition. J. Electrochem. Soc. 2003, 150, E578–E583. [Google Scholar] [CrossRef]
- Avellaneda, C.O.; Vieira, D.F.; Al-Kahlout, A.; Leite, E.R.; Pawlicka, A.; Aegerter, M.A. Solid-state electrochromic devices with nb2o5:Mo thin film and gelatin-based electrolyte. Electrochim. Acta 2007, 53, 1648–1654. [Google Scholar] [CrossRef]
- Avellaneda, C.O.; Vieira, D.F.; Al-Kahlout, A.; Heusing, S.; Leite, E.R.; Pawlicka, A.; Aegerter, M.A. All solid-state electrochromic devices with gelatin-based electrolyte. Sol. Energy Mater. Sol. Cells 2008, 92, 228–233. [Google Scholar] [CrossRef]
- De Mello, D.A.A.; Oliveira, M.R.S.; de Oliveira, L.C.S.; de Oliveira, S.C. Solid electrolytes for electrochromic devices based on reversible metal electrodeposition. Sol. Energy Mater. Sol. Cells 2012, 103, 17–24. [Google Scholar] [CrossRef]
- Ledwon, P.; Andrade, J.R.; Lapkowski, M.; Pawlicka, A. Hydroxypropyl cellulose-based gel electrolyte for electrochromic devices. Electrochim. Acta 2015, 159, 227–233. [Google Scholar] [CrossRef]
- Lin, S.-Y.; Chen, Y.-C.; Wang, C.-M.; Wen, C.-Y.; Shih, T.-Y. Study of MoO3–NiO complementary electrochromic devices using a gel polymer electrolyte. Solid State Ion. 2012, 212, 81–87. [Google Scholar] [CrossRef]
- Kiristi, M.; Bozduman, F.; Gulec, A.; Teke, E.; Oksuz, L.; Oksuz, A.U.; Deligöz, H. Complementary all solid state electrochromic devices using carboxymethyl cellulose based electrolytes. J. Macromol. Sci. Part A 2014, 51, 481–487. [Google Scholar] [CrossRef]
- Ramos, A.M.; Pereira, S.; Cidade, M.T.; Pereira, G.; Branquinho, R.; Pereira, L.; Martins, R.; Fortunato, E. Preparation and characterization of cellulose nanocomposite hydrogels as functional electrolytes. Solid State Ion. 2013, 242, 26–32. [Google Scholar] [CrossRef]
- Ngamaroonchote, A.; Chotsuwan, C. Performance and reliability of cellulose acetate-based gel electrolyte for electrochromic devices. J. Appl. Electrochem. 2016, 46, 575–582. [Google Scholar] [CrossRef]
- Byk additives & instruments_laponite. Available online: https://www.byk.com/fileadmin/byk/additives/product_groups/rheology/former_rockwood_additives/technical_brochures/BYK_B-RI21_LAPONITE_EN.pdf (accessed on 8 March 2018).
- Saroj, A.L.; Singh, R.K. Thermal, dielectric and conductivity studies on PVA/Ionic liquid [EMIM][EtSO4] based polymer electrolytes. J. Phys. Chem. Solids 2012, 73, 162–168. [Google Scholar] [CrossRef]
- Tang, Q.; Li, H.; Yue, Y.; Zhang, Q.; Wang, H.; Li, Y.; Chen, P. 1-Ethyl-3-methylimidazolium tetrafluoroborate-doped high ionic conductivity gel electrolytes with reduced anodic reaction potentials for electrochromic devices. Mater. Des. 2017, 118, 279–285. [Google Scholar] [CrossRef]
- Du, Q.; Fu, X.; Liu, S.; Niu, L. The effect of ionic liquid fragment on the performance of polymer electrolytes. Polym. Int. 2012, 61, 222–227. [Google Scholar] [CrossRef]
- Ye, Y.-S.; Rick, J.; Hwang, B.-J. Ionic liquid polymer electrolytes. J. Mater. Chem. A 2013, 1, 2719–2743. [Google Scholar] [CrossRef]
- Dulgerbaki, C.; Maslakci, N.N.; Komur, A.I.; Oksuz, A.U. Electrochromic device based on electrospun WO3 nanofibers. Mater. Res. Bull. 2015, 72, 70–76. [Google Scholar] [CrossRef]
- Chen, B.-H.; Kao, S.-Y.; Hu, C.-W.; Higuchi, M.; Ho, K.-C.; Liao, Y.-C. Printed multicolor high-contrast electrochromic devices. ACS Appl. Mater. Interfaces 2015, 7, 25069–25076. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-W.; Oh, H.; Bae, J.H.; Kim, H.; Moon, H.C.; Kim, S.H. Electrostatic-force-assisted dispensing printing of electrochromic gels for low-voltage displays. ACS Appl. Mater. Interfaces 2017, 9, 18994–19000. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.-H.; Hu, C.-W.; Kao, S.-Y.; Kung, C.-W.; Chen, H.-W.; Ho, K.-C. An all-organic solid-state electrochromic device containing poly(vinylidene fluoride-co-hexafluoropropylene), succinonitrile, and ionic liquid. Sol. Energy Mater. Sol. Cells 2015, 143, 606–612. [Google Scholar] [CrossRef]
- Oh, H.; Seo, D.G.; Yun, T.Y.; Lee, S.B.; Moon, H.C. Novel viologen derivatives for electrochromic ion gels showing a green-colored state with improved stability. Org. Electron. 2017, 51, 490–495. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.-F.; Chen, M.; Qian, D.-J.; Liu, M. Fabrication, characterization, electrochemistry, and redox-induced electrochromism of viologen-functionalized silica core-shell nano-composites. Electrochim. Acta 2017, 251, 562–572. [Google Scholar] [CrossRef]
- Moon, H.C.; Kim, C.-H.; Lodge, T.P.; Frisbie, C.D. Multicolored, low-power, flexible electrochromic devices based on ion gels. ACS Appl. Mater. Interfaces 2016, 8, 6252–6260. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.; Seo, D.G.; Yun, T.Y.; Kim, C.Y.; Moon, H.C. Voltage-tunable multicolor, sub-1.5 v, flexible electrochromic devices based on ion gels. ACS Appl. Mater. Interfaces 2017, 9, 7658–7665. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.-C.; Kao, S.-Y.; Yu, H.-F.; Chang, T.-H.; Kung, C.-W.; Ho, K.-C. Achieving low-energy driven viologens-based electrochromic devices utilizing polymeric ionic liquids. ACS Appl. Mater. Interfaces 2016, 8, 30351–30361. [Google Scholar] [CrossRef] [PubMed]
- Marcilla, R.; Alcaide, F.; Sardon, H.; Pomposo, J.A.; Pozo-Gonzalo, C.; Mecerreyes, D. Tailor-made polymer electrolytes based upon ionic liquids and their application in all-plastic electrochromic devices. Electrochem. Commun. 2006, 8, 482–488. [Google Scholar] [CrossRef]
- Shaplov, A.S.; Ponkratov, D.O.; Aubert, P.-H.; Lozinskaya, E.I.; Plesse, C.; Vidal, F.; Vygodskii, Y.S. A first truly all-solid state organic electrochromic device based on polymeric ionic liquids. Chem. Commun. 2014, 50, 3191–3193. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.-F.; Kao, S.-Y.; Lu, H.-C.; Lin, Y.-F.; Feng, H.; Pang, H.-W.; Vittal, R.; Lin, J.-J.; Ho, K.-C. Electrospun nanofibers composed of poly(vinylidene fluoride-co-hexafluoropropylene) and poly(oxyethylene)-imide imidazolium tetrafluoroborate as electrolytes for solid-state electrochromic devices. Sol. Energy Mater. Sol. Cells 2017. [Google Scholar] [CrossRef]
- Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jerome, F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev. 2012, 41, 7108–7146. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Baker, G.A. Ionic liquids and deep eutectic solvents for biodiesel synthesis: A review. J. Chem. Technol. Biotechnol. 2013, 88, 3–12. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Namieśnik, J. Ionic liquids and deep eutectic mixtures: Sustainable solvents for extraction processes. ChemSusChem 2014, 7, 1784–1800. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Zhang, H.; Row, K.H. Application of deep eutectic solvents in the extraction and separation of target compounds from various samples. J. Sep. Sci. 2015, 38, 1053–1064. [Google Scholar] [CrossRef] [PubMed]
- Khandelwal, S.; Tailor, Y.K.; Kumar, M. Deep eutectic solvents (dess) as eco-friendly and sustainable solvent/catalyst systems in organic transformations. J. Mol. Liq. 2016, 215, 345–386. [Google Scholar] [CrossRef]
- Guajardo, N.; Müller, C.R.; Schrebler, R.; Carlesi, C.; Domínguez de María, P. Deep eutectic solvents for organocatalysis, biotransformations, and multistep organocatalyst/enzyme combinations. ChemCatChem 2016, 8, 1020–1027. [Google Scholar] [CrossRef]
- Fernandes, P.M.V.; Campiña, J.M.; Pereira, N.M.; Pereira, C.M.; Silva, F. Biodegradable deep-eutectic mixtures as electrolytes for the electrochemical synthesis of conducting polymers. J. Appl. Electrochem. 2012, 42, 997–1003. [Google Scholar] [CrossRef]
- Fernandes, P.M.V.; Campiña, J.M.; Pereira, C.M.; Silva, F. Electrosynthesis of polyaniline from choline-based deep eutectic solvents: Morphology, stability and electrochromism. J. Electrochem. Soc. 2012, 159, G97–G105. [Google Scholar] [CrossRef]
- Prathish, K.P.; Carvalho, R.C.; Brett, C.M.A. Highly sensitive poly(3,4-ethylenedioxythiophene) modified electrodes by electropolymerisation in deep eutectic solvents. Electrochem. Soc. 2014, 44, 8–11. [Google Scholar] [CrossRef] [Green Version]
- Cai, G.-F.; Tu, J.-P.; Gu, C.-D.; Zhang, J.-H.; Chen, J.; Zhou, D.; Shi, S.-J.; Wang, X.-I. One-step fabrication of nanostructured nio films from deep eutectic solvent with enhanced electrochromic performance. J. Mater. Chem. A 2013, 1, 4286–4292. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, S.; Su, Y.; Liu, J.; Ying, Y.; Wang, F.; Cao, X. Semi-solid state electrochromic device based on deep eutectic solvent gel electrolyte and transparent au modified fto electrode. Electrochim. Acta 2017. [Google Scholar] [CrossRef]
- Cruz, H.; Jordao, N.; Branco, L.C. Deep eutectic solvents (dess) as low-cost and green electrolytes for electrochromic devices. Green Chem. 2017, 19, 1653–1658. [Google Scholar] [CrossRef]
- Avellaneda, C.O.; Dahmouche, K.; Bulhões, L.O.S.; Pawlicka, A. Characterization of an all sol-gel electrochromic device WO3/ormolyte/CeO2-TiO2. J. Sol-Gel Sci. Technol. 2000, 19, 447–451. [Google Scholar] [CrossRef]
- Munro, B.; Conrad, P.; Krämer, S.; Schmidt, H.; Zapp, P. Development of electrochromic cells by the sol–gel process. Sol. Energy Mater. Sol. Cells 1998, 54, 131–137. [Google Scholar] [CrossRef]
- Orel, B.; Opara Krašovec, U.; Lavrenčič Štangar, U.; Judeinstein, P. All sol-gel electrochromic devices with li+ ionic conductor, WO3 electrochromic films and SnO2 counter-electrode films. J. Sol-Gel Sci. Technol. 1998, 11, 87–104. [Google Scholar] [CrossRef]
- Zhang, J.; Tu, J.P.; Xia, X.H.; Qiao, Y.; Lu, Y. An all-solid-state electrochromic device based on nio/WO3 complementary structure and solid hybrid polyelectrolyte. Sol. Energy Mater. Sol. Cells 2009, 93, 1840–1845. [Google Scholar] [CrossRef]
- Barbosa, P.C.; Silva, M.M.; Smith, M.J.; Gonçalves, A.; Fortunato, E. Studies of solid-state electrochromic devices based on peo/siliceous hybrids doped with lithium perchlorate. Electrochim. Acta 2007, 52, 2938–2943. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, L.C.; Barbosa, P.C.; Silva, M.M.; Smith, M.J.; Gonçalves, A.; Fortunato, E. Application of hybrid materials in solid-state electrochromic devices. Opt. Mater. 2009, 31, 1467–1471. [Google Scholar] [CrossRef] [Green Version]
- Chang, T.-H.; Hu, C.-W.; Vittal, R.; Ho, K.-C. Incorporation of plastic crystal and transparent uv-cured polymeric electrolyte in a complementary electrochromic device. Sol. Energy Mater. Sol. Cells 2014, 126, 213–218. [Google Scholar] [CrossRef]
- Lu, H.-C.; Kao, S.-Y.; Chang, T.-H.; Kung, C.-W.; Ho, K.-C. An electrochromic device based on prussian blue, self-immobilized vinyl benzyl viologen, and ferrocene. Sol. Energy Mater. Sol. Cells 2016, 147, 75–84. [Google Scholar] [CrossRef]
- Soutar, A.M.; Rosseinsky, D.R.; Freeman, W.; Zhang, X.; How, X.; Jiang, H.; Zeng, X.; Miao, X. Electrochromic cell with uv-curable electrolyte polymer for cohesion and strength. Sol. Energy Mater. Sol. Cells 2012, 100, 268–270. [Google Scholar] [CrossRef]
- Chidichimo, G.; De Simone, B.C.; Imbardelli, D.; De Benedittis, M.; Barberio, M.; Ricciardi, L.; Beneduci, A. Influence of oxygen impurities on the electrochromic response of viologen-based plastic films. J. Phys. Chem. C 2014, 118, 13484–13492. [Google Scholar] [CrossRef]
- Chang, T.-H.; Lu, H.-C.; Lee, M.-H.; Kao, S.-Y.; Ho, K.-C. Multi-color electrochromic devices based on phenyl and heptyl viologens immobilized with uv-cured polymer electrolyte. Sol. Energy Mater. Sol. Cells 2017. [Google Scholar] [CrossRef]
- Otley, M.T.; Alamer, F.A.; Zhu, Y.; Singhaviranon, A.; Zhang, X.; Li, M.; Kumar, A.; Sotzing, G.A. Acrylated poly(3,4-propylenedioxythiophene) for enhancement of lifetime and optical properties for single-layer electrochromic devices. ACS Appl. Mater. Interfaces 2014, 6, 1734–1739. [Google Scholar] [CrossRef] [PubMed]
- Rauh, R.D.; Wang, F.; Reynolds, J.R.; Meeker, D.L. High coloration efficiency electrochromics and their application to multi-color devices. Electrochim. Acta 2001, 46, 2023–2029. [Google Scholar] [CrossRef]
- Tahara, H.; Baba, R.; Iwanaga, K.; Sagara, T.; Murakami, H. Electrochromism of a bipolar reversible redox-active ferrocene-viologen linked ionic liquid. Chem. Commun. 2017, 53, 2455–2458. [Google Scholar] [CrossRef] [PubMed]
- Alesanco, Y.; Palenzuela, J.; Viñuales, A.; Cabañero, G.; Grande, H.J.; Odriozola, I. Polyvinyl alcohol–borax slime as promising polyelectrolyte for high-performance, easy-to-make electrochromic devices. ChemElectroChem 2015, 2, 218–223. [Google Scholar] [CrossRef]
- Katz, D.A. A bag of slime: A novel lab procedure. J. Chem. Educ. 1994, 71, 891. [Google Scholar] [CrossRef]
- Katz, D.A. Polyvinyl Alcohol Slime. Available online: http://www.chymist.com/PVA%20Slime.pdf (accessed on 8 March 2018).
- Pva Polymer Slime. Available online: http://www.rsc.org/learn-chemistry/resource/res00000756/ (accessed on 8 March 2018).
- Hurst, G.A.; Bella, M.; Salzmann, C.G. The rheological properties of poly(vinyl alcohol) gels from rotational viscometry. J. Chem. Educ. 2015, 92, 940–945. [Google Scholar] [CrossRef]
- Inoue, T.; Osaki, K. Rheological properties of poly(vinyl alcohol)/sodium borate aqueous solutions. Rheol. Acta 1993, 32, 550–555. [Google Scholar] [CrossRef]
- Koike, A.; Nemoto, N.; Inoue, T.; Osaki, K. Dynamic light scattering and dynamic viscoelasticity of poly(vinyl alcohol) in aqueous borax solutions. 1. Concentration effect. Macromolecules 1995, 28, 2339–2344. [Google Scholar] [CrossRef]
- de Zea Bermudez, V.; de Almeida, P.P.; Seita, J.F. How to learn and have fun with poly(vinyl alcohol) and white glue. J. Chem. Educ. 1998, 75, 1410. [Google Scholar] [CrossRef]
- Pezron, E.; Leibler, L.; Ricard, A.; Lafuma, F.; Audebert, R. Complex formation in polymer-ion solution. 1. Polymer concentration effects. Macromolecules 1989, 22, 1169–1174. [Google Scholar] [CrossRef]
- Sato, T.; Tsujii, Y.; Fukuda, T.; Miyamoto, T. Reversible gelation of short-chain o-(2,3-dihydroxypropyl) cellulose/borax solutions. 2. Sol-gel transition. Macromolecules 1992, 25, 5970–5973. [Google Scholar] [CrossRef]
- Monk, P.M.S. The Viologens: Physicochemical Properties, Synthesis, and Applications of the Salts of 4,4′-Bipyridine; Wiley: Chichester, UK, 1998. [Google Scholar]
- Bewick, A.; Lowe, A.C.; Wederell, C.W. Recrystallisation process in viologen-based electrochromic deposits: Voltammetry coupled with rapid time-resolved spectroscopy. Electrochim. Acta 1983, 28, 1899–1902. [Google Scholar] [CrossRef]
- Monk, P.M.S.; Mortimer, R.J.; Rosseinsky, D.R. Bipyridilium systems. In Electrochromism; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2007; pp. 124–142. [Google Scholar]
- Moon, H.C.; Lodge, T.P.; Frisbie, C.D. Solution processable, electrochromic ion gels for sub-1 V, flexible displays on plastic. Chem. Mater. 2015, 27, 1420–1425. [Google Scholar] [CrossRef]
- Hwang, E.; Seo, S.; Bak, S.; Lee, H.; Min, M.; Lee, H. An electrolyte-free flexible electrochromic device using electrostatically strong graphene quantum dot–viologen nanocomposites. Adv. Mater. 2014, 26, 5129–5136. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.; Kim, H.; Moon, H.C.; Kim, S.H. Low-voltage, simple WO3-based electrochromic devices by directly incorporating an anodic species into the electrolyte. J. Mater. Chem. C 2016, 4, 10887–10892. [Google Scholar] [CrossRef]
- Monk, P.M.S. The effect of ferrocyanide on the performance of heptyl viologen-based electrochromic display devices. J. Electroanal. Chem. 1997, 432, 175–179. [Google Scholar] [CrossRef]
- Yasuda, A.; Kondo, H.; Itabashi, M.; Seto, J. Structure changes of viologen + β-cyclodextrin inclusion complex corresponding to the redox state of viologen. J. Electroanal. Chem. Interfacial Electrochem. 1986, 210, 265–275. [Google Scholar] [CrossRef]
- Monk, P.M.S.; Fairweather, R.D.; Ingram, M.D.; Duffy, J.A. Evidence for the product of the viologen comproportionation reaction being a spin-paired radical cation dimer. J. Chem. Soc. Perkin Trans. 2 1992, 2039–2041. [Google Scholar] [CrossRef]
- Hiroshi, M.; Jin, M. Green electrochromism in the system of p-cyanophenylviologen and potassium ferrocyanide. Jpn. J. Appl. Phys. 1987, 26, 1356–1360. [Google Scholar]
- Kenworthy, J. Variable Light Transmission Device. U.S. Patent 3,712,709, 23 January 1973. [Google Scholar]
- Rosseinsky, D.R.; Monk, P.M.S.; Hann, R.A. Anion-dependent aqueous electrodeposition of electrochromic 1,1′-bis-cyanophenyl-4,4′-bipyridilium (cyanophenylparaquat) radical cation by cyclic voltammetry and spectroelectrochemical studies. Electrochim. Acta 1990, 35, 1113–1123. [Google Scholar] [CrossRef]
- Mizuguchi, J.; Karfunkel, H. Semi-empirical calculations on the optical absorption of methylviologen and p-cyanophenylviologen in different oxidation states. Ber. Bunsen-Ges. Phys. Chem. 1993, 97, 1466–1472. [Google Scholar] [CrossRef]
- Alesanco, Y.; Viñuales, A.; Palenzuela, J.; Odriozola, I.; Cabañero, G.; Rodriguez, J.; Tena-Zaera, R. Multicolor electrochromics: Rainbow-like devices. ACS Appl. Mater. Interfaces 2016, 8, 14795–14801. [Google Scholar] [CrossRef] [PubMed]
- Wadhwa, K.; Nuryyeva, S.; Fahrenbach, A.C.; Elhabiri, M.; Platas-Iglesias, C.; Trabolsi, A. Intramolecular redox-induced dimerization in a viologen dendrimer. J. Mater. Chem. C 2013, 1, 2302–2307. [Google Scholar] [CrossRef]
- Jeon, W.S.; Kim, H.-J.; Lee, C.; Kim, K. Control of the stoichiometry in host-guest complexation by redox chemistry of guests: Inclusion of methylviologen in cucurbit[8]uril. Chem. Commun. 2002, 1828–1829. [Google Scholar] [CrossRef]
- Quintela, P.A.; Kaifer, A.E. Electrochemistry of methylviologen in the presence of sodium decyl sulfate. Langmuir 1987, 3, 769–773. [Google Scholar] [CrossRef]
- Park, J.W.; Choi, N.H.; Kim, J.H. Facile dimerization of viologen radical cations covalently bonded to β-cyclodextrin and suppression of the dimerization by β-cyclodextrin and amphiphiles. J. Phys. Chem. 1996, 100, 769–774. [Google Scholar] [CrossRef]
- Jordao, N.; Cruz, H.; Branco, A.; Pinheiro, C.; Pina, F.; Branco, L.C. Switchable electrochromic devices based on disubstituted bipyridinium derivatives. RSC Adv. 2015, 5, 27867–27873. [Google Scholar] [CrossRef]
- Alesanco, Y.; Viñuales, A.; Cabañero, G.; Rodriguez, J.; Tena-Zaera, R. Colorless to neutral color electrochromic devices based on asymmetric viologens. ACS Appl. Mater. Interfaces 2016, 8, 29619–29627. [Google Scholar] [CrossRef] [PubMed]
- Alesanco, Y.; Viñuales, A.; Cabañero, G.; Rodriguez, J.; Tena-Zaera, R. Colorless-to-black/gray electrochromic devices based on a single 1-alkyl-1′-aryl asymmetric viologen-modified monolayered electrodes. Adv. Opt. Mater. 2017. [Google Scholar] [CrossRef]
- Monk, P.M.S. Comment on: “Dimer formation of viologen derivatives and their electrochromic properties”. Dyes Pigments 1998, 39, 125–128. [Google Scholar] [CrossRef]
- Mortimer, R.J.; Varley, T.S. Novel color-reinforcing electrochromic device based on surface-confined ruthenium purple and solution-phase methyl viologen. Chem. Mater. 2011, 23, 4077–4082. [Google Scholar] [CrossRef]
- Bird, C.L.; Kuhn, A.T. Electrochemistry of the viologens. Chem. Soc. Rev. 1981, 10, 49–82. [Google Scholar] [CrossRef]
- Sassi, M.; Salamone, M.M.; Ruffo, R.; Patriarca, G.E.; Mari, C.M.; Pagani, G.A.; Posset, U.; Beverina, L. State-of-the-art neutral tint multichromophoric polymers for high-contrast see-through electrochromic devices. Adv. Funct. Mater. 2016, 26, 5240–5246. [Google Scholar] [CrossRef]
- Sassi, M.; Salamone, M.M.; Ruffo, R.; Mari, C.M.; Pagani, G.A.; Beverina, L. Gray to colorless switching, crosslinked electrochromic polymers with outstanding stability and transmissivity from naphthalenediimmide-functionalized edot. Adv. Mater. 2012, 24, 2004–2008. [Google Scholar] [CrossRef] [PubMed]
- Amb, C.M.; Dyer, A.L.; Reynolds, J.R. Navigating the color palette of solution-processable electrochromic polymers. Chem. Mater. 2011, 23, 397–415. [Google Scholar] [CrossRef]
- Alesanco, Y.; Viñuales, A.; Ugalde, J.; Azaceta, E.; Cabañero, G.; Rodriguez, J.; Tena-Zaera, R. Consecutive anchoring of symmetric viologens: Electrochromic devices providing colorless to neutral-color switching. Sol. Energy Mater. Sol. Cells 2017, 177, 110–119. [Google Scholar] [CrossRef]
- Ah, C.S.; Song, J.; Cho, S.M.; Kim, T.-Y.; Kim, H.N.; Oh, J.Y.; Chu, H.Y.; Ryu, H. Double-layered black electrochromic device with a single electrode and long-term bistability. Bull. Korean Chem. Soc. 2015, 36, 548–552. [Google Scholar]
- Weng, D.; Shi, Y.; Zheng, J.; Xu, C. High performance black-to-transmissive electrochromic device with panchromatic absorption based on TiO2-supported viologen and triphenylamine derivatives. Org. Electron. 2016, 34, 139–145. [Google Scholar] [CrossRef]
- Unur, E.; Beaujuge, P.M.; Ellinger, S.; Jung, J.-H.; Reynolds, J.R. Black to transmissive switching in a pseudo three-electrode electrochromic device. Chem. Mater. 2009, 21, 5145–5153. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alesanco, Y.; Viñuales, A.; Rodriguez, J.; Tena-Zaera, R. All-in-One Gel-Based Electrochromic Devices: Strengths and Recent Developments. Materials 2018, 11, 414. https://doi.org/10.3390/ma11030414
Alesanco Y, Viñuales A, Rodriguez J, Tena-Zaera R. All-in-One Gel-Based Electrochromic Devices: Strengths and Recent Developments. Materials. 2018; 11(3):414. https://doi.org/10.3390/ma11030414
Chicago/Turabian StyleAlesanco, Yolanda, Ana Viñuales, Javier Rodriguez, and Ramón Tena-Zaera. 2018. "All-in-One Gel-Based Electrochromic Devices: Strengths and Recent Developments" Materials 11, no. 3: 414. https://doi.org/10.3390/ma11030414