Hybrid Zeolite SAPO-34 Fibres Made by Electrospinning
Abstract
:1. Introduction
2. Experimental
2.1. Zeolite SAPO-34 Synthesis
2.2. Electrospinning of Hybrid Microfibres
2.3. Zeolite Microfibres Characterization
3. Results and Discussion
3.1. Adsorbing Material Characterization
3.2. Polyethylene Oxide/SAPO-34 Microfibres
3.3. Polyvinyl Acetate/SAPO-34 Microfibres
3.4. Polystyrene/SAPO-34 Microfibres
3.5. Thermogravimetric Characterization of Hybrid Microfibres
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Van Benthem, G.H.W.; Cacciola, G.; Restuccia, G. Regenerative Adsorption Heat Pumps: OPTIMIZATION of the design. Heat Recover. Syst. CHP 1995, 15, 531–544. [Google Scholar] [CrossRef]
- Srivastava, N.C.; Eames, I.W. A review of adsorbents and adsorbates in solid–vapour adsorption heat pump systems. Appl. Therm. Eng. 1998, 18, 707–714. [Google Scholar] [CrossRef]
- Meunier, F. Solid sorption heat powered cycles for cooling and heat pumping applications. Appl. Therm. Eng. 1998, 18, 715–729. [Google Scholar] [CrossRef]
- Eun, T.H.; Song, H.K.; Han, J.H.; Lee, K.H.; Kim, J.N. Enhancement of heat and mass transfer in silica-expanded graphite composite blocks for adsorption heat pumps: Part I. Characterization of the composite blocks. Int. J. Refrig. 2000, 23, 64–73. [Google Scholar] [CrossRef]
- Mauriello, F.; Armandi, M.; Bonelli, B.; Onida, B.; Garrone, E. H-Bonding of Furan and Its Hydrogenated Derivatives with the Isolated Hydroxyl of Amorphous Silica: An IR Spectroscopic and Thermodynamic Study. J. Phys. Chem. 2010, 114, 18233–18239. [Google Scholar] [CrossRef]
- Cacciola, G.; Restuccia, G. Reversible adsorption heat pump: A thermodynamic model. Int. J. Refrig. 1995, 18, 100–106. [Google Scholar] [CrossRef]
- Pons, M.; Meunier, F.; Cacciola, G.; Critoph, R.E.; Groll, M.; Puigjaner, L.; Spinner, B.; Ziegler, F. Thermodynamic based comparison of sorption systems for cooling and heat pumping. Int. J. Refrig. 1999, 22, 5–17. [Google Scholar] [CrossRef]
- Chalaev, D.M.; Aristov, Y.I. Assessment of the operation of a low-temperature adsorption refrigerator. Therm. Eng. 2006, 53, 240–244. [Google Scholar] [CrossRef]
- Zhu, L.Q.; Tso, C.Y.; Chan, K.C.; Wu, C.L.; Chao, C.Y.H.; Chen, J.; He, W.; Luo, S.W. Experimental investigation on composite adsorbent—Water pair for a solar-powered adsorption cooling system. Appl. Therm. Eng. 2018, 131, 649–659. [Google Scholar] [CrossRef]
- Meunier, F. Adsorption heat powered heat pumps. Appl. Therm. Eng. 2013, 61, 830–836. [Google Scholar] [CrossRef]
- Bonaccorsi, L.; Calabrese, L.; Proverbio, E.; Frazzica, A.; Freni, A.; Restuccia, G.; Piperopoulos, E.; Milone, C. Synthesis of SAPO-34/graphite composites for low temperature heat adsorption pumps. J. Energy Chem. 2013, 22, 245–250. [Google Scholar] [CrossRef]
- Restuccia, G.; Cacciola, G. Performances of adsorption systems for ambient heating and air conditioning. Int. J. Refrig. 1999, 22, 18. [Google Scholar] [CrossRef]
- Munoz, R.A.; Beving, D.; Yan, Y. Hydrophilic Zeolite Coatings for Improved Heat Transfer. Ind. Eng. Chem. Res. 2005, 44, 4310–4315. [Google Scholar] [CrossRef]
- Sapienza, A.; Gullì, G.; Calabrese, L.; Palomba, V.; Frazzica, A.; Brancato, V.; La, D.; Vasta, S.; Freni, A.; Bonaccorsi, L.; et al. An innovative adsorptive chiller prototype based on 3 hybrid coated/granular adsorbers. Appl. Energy 2016, 179, 929–938. [Google Scholar] [CrossRef]
- Schnabel, L.; Tatlier, M.; Schmidt, F.; Erdem-Şenatalar, A. Adsorption kinetics of zeolite coatings directly crystallized on metal supports for heat pump applications. Appl. Therm. Eng. 2010, 30, 1409–1416. [Google Scholar] [CrossRef]
- Bonaccorsi, L.; Bruzzaniti, P.; Calabrese, L.; Proverbio, E. Organosilanes functionalization of alumino-silica zeolites for water adsorption applications. Microporous Mesoporous Mater. 2016, 234, 113–119. [Google Scholar] [CrossRef]
- Mascolo, M.C.; Ring, T.A. Recyclable Aggregates of Mesoporous Titania Synthesized by Thermal Treatment of Amorphous or Peptized Precursors. Materials 2018, 11, 381. [Google Scholar] [CrossRef]
- Calabrese, L.; Bonaccorsi, L.; Bruzzaniti, P.; Freni, A.; Proverbio, E. Morphological and functional aspects of zeolite filled siloxane composite foams. J. Appl. Polym. Sci. 2018, 135. [Google Scholar] [CrossRef]
- Ding, B.; Wang, X.; Yu, J. Electrospinning: Nanofabrication and Applications; Elsevier: New York, NY, USA, 2018; ISBN 978-0-323-51270-1. [Google Scholar]
- Zander, N.E.; Gillan, M.; Sweetser, D. Recycled PET Nanofibres for Water Filtration Applications. Materials 2016, 9, 247–253. [Google Scholar] [CrossRef]
- Belaustegui, Y.; Zorita, S.; Fernández-Carretero, F.; García-Luis, A.; Pantò, F.; Stelitano, S.; Frontera, P.; Antonucci, P.; Santangelo, S. Electro-spun graphene-enriched carbon fibres with high nitrogen-contents for electrochemical water desalination. Desalination 2018, 428, 40–49. [Google Scholar] [CrossRef]
- Ferrández-Rives, M.; Beltrán-Osuna, A.A.; Gómez-Tejedor, J.A.; Gómez Ribelles, J.L. Electrospun PVA/Bentonite Nanocomposites Mats for Drug Delivery. Materials 2017, 10, 1448. [Google Scholar] [CrossRef] [PubMed]
- Frontera, P.; Busacca, C.; Trocino, S.; Antonucci, P.; Lo Faro, M.; Falletta, E.; Della Pina, C.; Rossi, M. Electrospinning of polyaniline: Effect of different raw sources. J. Nanosci. Nanotechnol. 2013, 13, 4744–4751. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, X.; Fu, J.; Liu, R.; He, H.; Ma, J.; Yu, M.; Ramakrishna, S.; Long, Y. Electrospinning of Ultrafine Conducting Polymer Composite Nanofibres with Diameter Less than 70 nm as High Sensitive Gas Sensor. Materials 2018, 11, 1744. [Google Scholar] [CrossRef] [PubMed]
- Frontera, P.; Trocino, S.; Donato, A.; Antonucci, P.L.; Lo Faro, M.; Squadrito, G.; Neri, G. Oxygen-sensing properties of electrospun CNTs/PVAc/TiO2 composites. Electr. Mater. Lett. 2014, 10, 305–313. [Google Scholar] [CrossRef]
- Luzio, A.; Canesi, E.V.; Bertarelli, C.; Caironi, M. Electrospun Polymer Fibres for Electronic Applications. Materials 2014, 7, 906–947. [Google Scholar] [CrossRef] [PubMed]
- Frontera, P.; Malara, A.; Stelitano, S.; Fazio, E.; Neri, F.; Scarpino, L.; Antonucci, P.L.; Santangelo, S. A new approach to the synthesis of titania nano-powders enriched with very high contents of carbon nanotubes by electro-spinning. Mater. Chem. Phys. 2015, 153, 338–345. [Google Scholar] [CrossRef]
- Kubiak, A.; Siwińska-Ciesielczyk, K.; Jesionowski, T. Titania-Based Hybrid Materials with ZnO, ZrO2 and MoS2: A Review. Materials 2018, 11, 2295. [Google Scholar] [CrossRef]
- ImageJ. Available online: http://imagej.nih.gov/ij/index.html (accessed on 5 November 2018).
- Hotaling, N.A.; Bharti, K.; Kriel, H.; Simon, C.G. DiameterJ: A validated open source nanofibre diameter measurement tool. Biomaterials 2015, 61, 327–338. [Google Scholar] [CrossRef]
- Van Bekkum, H.; Flanigen, E.M.; Jansen, K.; Jacobs, P. Introduction to zeolite Science and Pratcice, 3rd ed.; Cejka, J., Van Bekkum, H., Corma, A., Schuth, F., Eds.; Elsevier: New York, NY, USA, 2007; ISBN 9780444530639. [Google Scholar]
- International Zeolite Association. Available online: http://www.iza-structure.org (accessed on 5 November 2018).
- Aristov, Y.I. Optimal adsorbent for adsorptive heat transformers: Dynamic considerations. Int. J. Refrig. 2009, 32, 675–686. [Google Scholar] [CrossRef]
- Fong, H.; Chun, I.; Reneker, D.H. Beaded nanofibres formed during electrospinning. Polymer 1999, 40, 4585–4592. [Google Scholar] [CrossRef]
Zeolite/Polymeric Solution (Weight %) | Polymer | Solvent | ||||
---|---|---|---|---|---|---|
60% | 80% | 85% | 87% | |||
Samples | n/a | PEO-80 | PEO-85 | PEO-87 | PEO | EtOH |
PVA-60 | PVA-80 | PVA-85 | n/a | PVA | EtOH | |
PS-60 | n/a | n/a | n/a | PS | DMF |
Microfibres SAMPLE | Initial Zeolite % | Residual Mass at T = 500 °C (Dry Weight %) | Recalculated Zeolite % | Weight Loss % | |
---|---|---|---|---|---|
Measured | Expected | ||||
PEO-87 | 87 | 57.1 | 71.8 | 70.1 | 19.4 |
PVA-85 | 85 | 67.5 | 70.1 | 81.8 | 3.7 |
PS-60 | 60 | 47.5 | 49.5 | 57.6 | 4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malara, A.; Frontera, P.; Bonaccorsi, L.; Antonucci, P.L. Hybrid Zeolite SAPO-34 Fibres Made by Electrospinning. Materials 2018, 11, 2555. https://doi.org/10.3390/ma11122555
Malara A, Frontera P, Bonaccorsi L, Antonucci PL. Hybrid Zeolite SAPO-34 Fibres Made by Electrospinning. Materials. 2018; 11(12):2555. https://doi.org/10.3390/ma11122555
Chicago/Turabian StyleMalara, Angela, Patrizia Frontera, Lucio Bonaccorsi, and Pier Luigi Antonucci. 2018. "Hybrid Zeolite SAPO-34 Fibres Made by Electrospinning" Materials 11, no. 12: 2555. https://doi.org/10.3390/ma11122555
APA StyleMalara, A., Frontera, P., Bonaccorsi, L., & Antonucci, P. L. (2018). Hybrid Zeolite SAPO-34 Fibres Made by Electrospinning. Materials, 11(12), 2555. https://doi.org/10.3390/ma11122555