Optimization of Steam-Curing Regime for Recycled Aggregate Concrete Incorporating High Early Strength Cement—A Parametric Study
Abstract
1. Introduction
Research Significance
2. Materials and Experimental Methods
2.1. Raw Materials
2.2. Mixture Proportioning and Specimen Casting
2.3. Steam-Curing Conditions Employed in the Study
2.4. Experimental Methods and Procedures
3. Results, Discussion, and Analyses
3.1. Fresh State Concrete Properties
3.2. Compressive Strength
4. Conclusions
- Steam curing significantly increases the hydration rate of recycled aggregate concrete, thus helping to attain the target (design strength) within three days of casting.
- Utilizing moderately high early strength cement leads to a higher rate of strength gain of recycled aggregate concrete when steam curing is employed. This leads to increased early-age strength, without compromising the ultimate strength owing to the higher C2S content.
- The optimum conditions for steam curing based on the strength criterion were a heating/cooling rate of 20 °C/h and a peak temperature of 50 °C, maintained for one hour.
- Determining the optimum steam-curing temperature and duration will help reduce the associated curing costs, thus further economizing the production of recycled aggregate concrete.
Author Contributions
Funding
Conflicts of Interest
References
- De Schutter, G. Fundamental study of early age concrete behaviour as a basis for durable concrete structures. Mater. Struct. 2002, 35, 15–21. [Google Scholar] [CrossRef]
- Nixon, P.J. Recycled concrete as an aggregate for concrete—A review. Matér. Constr. 1978, 11, 371–378. [Google Scholar] [CrossRef]
- Xiao, J. Recycled Aggregate Concrete; Springer Nature (Springer-Verlag GmbH Germany): Berlin/Heidelberg, Germany, 2018; ISBN 9783662539859. [Google Scholar]
- Bontempi, E. A new approach for evaluating the sustainability of raw materials substitution based on embodied energy and the CO2 footprint. J. Clean. Prod. 2017, 162, 162–169. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, X.; Teng, X.; Zhang, S. Dynamic compressive behavior of recycled aggregate concrete based on split Hopkinson pressure bar tests. Mater. Struct. 2016, 131–141. [Google Scholar] [CrossRef]
- De Brito, J.; Ferreira, J.; Pacheco, J.; Soares, D.; Guerreiro, M. Structural, material, mechanical and durability properties and behaviour of recycled aggregates concrete. J. Build. Eng. 2016, 6, 1–16. [Google Scholar] [CrossRef]
- Silva, R.V.; de Brito, J.; Dhir, R.K. Establishing a relationship between modulus of elasticity and compressive strength of recycled aggregate concrete. J. Clean. Prod. 2015, 112, 2171–2186. [Google Scholar] [CrossRef]
- Bogas, J.A.; De Brito, J.; Ramos, D. Freeze–thaw resistance of concrete produced with fine recycled concrete aggregates. J. Clean. Prod. 2015, 115, 294–306. [Google Scholar] [CrossRef]
- Silva, R.V.; Neves, R.; De Brito, J.; Dhir, R.K. Carbonation behaviour of recycled aggregate concrete. Cem. Concr. Compos. 2015, 62, 22–32. [Google Scholar] [CrossRef]
- Yehia, S.; Helal, K.; Abusharkh, A.; Zaher, A.; Istaitiyeh, H. Strength and Durability Evaluation of Recycled Aggregate Concrete. Int. J. Concr. Struct. Mater. 2015, 9, 219–239. [Google Scholar] [CrossRef]
- Matias, D.; De Brito, J.; Rosa, A.; Pedro, D. Durability of Concrete with Recycled Coarse Aggregates: Influence of Superplasticizers. J. Mater. Civ. Eng. 2014, 06014011. [Google Scholar] [CrossRef]
- Lye, C.Q.; Dhir, R.K.; Ghataora, G.S.; Li, H. Creep strain of recycled aggregate concrete. Constr. Build. Mater. 2016, 102, 244–259. [Google Scholar] [CrossRef]
- Gonzalez-Corominas, A.; Etxeberria, M. Effects of using recycled concrete aggregates on the shrinkage of high performance concrete. Constr. Build. Mater. 2016, 115, 32–41. [Google Scholar] [CrossRef]
- Bendimerad, A.Z.; Rozière, E.; Loukili, A. Plastic shrinkage and cracking risk of recycled aggregates concrete. Constr. Build. Mater. 2016, 121, 733–745. [Google Scholar] [CrossRef]
- Kim, Y.; Hanif, A.; Kazmi, S.M.S.; Munir, M.J.; Park, C. Properties enhancement of recycled aggregate concrete through pretreatment of coarse aggregates—Comparative assessment of assorted techniques. J. Clean. Prod. 2018, 191, 339–349. [Google Scholar] [CrossRef]
- Zhang, R.; Cheng, X.; Hou, P.; Ye, Z. Influences of nano-TiO2 on the properties of cement-based materials: Hydration and drying shrinkage. Constr. Build. Mater. 2015, 81, 35–41. [Google Scholar] [CrossRef]
- Shah, S.P.; Hou, P.; Konsta-Gdoutos, M.S. Nano-modification of cementitious material: Toward a stronger and durable concrete. J. Sustain. Cem. Mater. 2015, 5, 1–22. [Google Scholar] [CrossRef]
- Sobolev, K.; Lin, Z.; Flores-Vivian, I.; Pradoto, R. Nano-Engineered Cements with Enhanced Mechanical Performance. J. Am. Ceram. Soc. 2016, 99, 564–572. [Google Scholar] [CrossRef]
- Jamshidi, A.; Kurumisawa, K.; Nawa, T.; Samali, B.; Igarashi, T. Evaluation of energy requirement and greenhouse gas emission of concrete heavy-duty pavements incorporating high volume of industrial by-products. J. Clean. Prod. 2017, 166, 1507–1520. [Google Scholar] [CrossRef]
- Türkel, S.; Alabas, V. The effect of excessive steam curing on Portland composite cement concrete. Cem. Concr. Res. 2005, 35, 405–411. [Google Scholar] [CrossRef]
- Park, J.S.; Kim, Y.J.; Cho, J.R.; Jeon, S.J. Early-age strength of ultra-high performance concrete in various curing conditions. Materials 2015, 8, 5537–5553. [Google Scholar] [CrossRef]
- Hanif, A.; Kim, Y.; Lu, Z.; Park, C. Early-age behavior of recycled aggregate concrete under steam curing regime. J. Clean. Prod. 2017, 152, 103–114. [Google Scholar] [CrossRef]
- Liu, B.; Xie, Y.; Li, J. Influence of steam curing on the compressive strength of concrete containing supplementary cementing materials. Cem. Concr. Res. 2005, 35, 994–998. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Kim, S.-W.; Park, C.-W.; Sim, J.-S. Compressive Strength Properties of Concrete Using High Early Strength Cement and Recycled Aggregate with Steam Curing Conditions. J. Korean Recycl. Constr. Resour. Inst. 2016, 4, 76–81. [Google Scholar] [CrossRef]
- Hanif, A.; Kim, Y.; Lee, K.; Park, C.; Sim, J. Influence of cement and aggregate type on steam-cured concrete—An experimental study. Mag. Concr. Res. 2017, 69, 694–702. [Google Scholar] [CrossRef]
- Ramezanianpour, A.A.; Khazali, M.H.; Vosoughi, P. Effect of steam curing cycles on strength and durability of SCC: A case study in precast concrete. Constr. Build. Mater. 2013, 49, 807–813. [Google Scholar] [CrossRef]
- Ramezanianpour, A.M.; Esmaeili, K.; Ghahari, S.A.; Ramezanianpour, A.A. Influence of initial steam curing and different types of mineral additives on mechanical and durability properties of self-compacting concrete. Constr. Build. Mater. 2014, 73, 187–194. [Google Scholar] [CrossRef]
- Ba, M.F.; Qian, C.X.; Guo, X.J.; Han, X.Y. Effects of steam curing on strength and porous structure of concrete with low water/binder ratio. Constr. Build. Mater. 2011, 25, 123–128. [Google Scholar] [CrossRef]
- Kosmatka, S.H.; Kerkhoff, B.; Panarase, W.C. Design and Control of Concrete Mixtures, 14th ed.; Portland Cement Association (PCA): New York, NY, USA, 2008; ISBN 0-893122173. [Google Scholar]
- Standard Test Method for Sieve Analysis of Fine and Coarse Aggregate; Korean Standrads Association: Seoul, Korea, 2006; KS F 2502-2010.
- Testing Method for Density and Absorption of Fine Aggregate; Korean Standrads Association: Seoul, Korea, 2006; KS F 2504-2007.
- Testing Method for Density and Absorption of Coarse Aggregate; Korean Standrads Association: Seoul, Korea, 2006; KS F 2503-2007.
- Recycled Aggregate for Concrete; Korean Standrads Association: Seoul, Korea, 2006; KS F 2573-2006.
- Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete; ACI Committee: Farmington Hills, MI, USA, 2002; ACI 211.1-91.
- Building Code Requirements for Structural Concrete; ACI Committee: Farmington Hills, MI, USA, 2008; ACI 318M-08.
- Lee, H.; Hanif, A.; Usman, M.; Sim, J.; Oh, H. Performance evaluation of concrete incorporating glass powder and glass sludge wastes as supplementary cementing material. J. Clean. Prod. 2018, 170. [Google Scholar] [CrossRef]
- Kim, Y.; Hanif, A.; Usman, M.; Munir, M.J.; Kazmi, S.M.S.; Kim, S. Slag waste incorporation in high early strength concrete as cement replacement: Environmental impact and influence on hydration & durability attributes. J. Clean. Prod. 2018, 172, 3056–3065. [Google Scholar] [CrossRef]
- Hanif, A. Recycled Aggregate Use in Precast Concrete: Properties & Applications; LAMBERT Academic Publishing: Saarbrücken, Germany, 2017; ISBN 978-3-330-07808-6. [Google Scholar]
- Hanif, A.; Kim, Y.; Lee, H.; Park, C.; Sim, J. Suitability Assessment of Reinforced Precast Concrete Blocks Incorporating Recycled Aggregate. In Proceedings of the Korea Concrete Institute Autumn Convention 2011, Seoul, Korea, 1 November 2011. [Google Scholar]
- Hanif, A.; Kim, Y.; Kang, T.; Lee, T.; Jo, C.; Sim, J. A Study on the Compressive Strength of Precast Concrete Using Recycled Aggregate Concrete. In Proceedings of the Korea Concrete Institute Spring Convention 2011, Jeju, Korea, 11 May 2011. [Google Scholar]
- Sim, J.; Park, C.; Park, S.; Kim, Y. Characterization of Compressive Strength and Elastic Modulus of Recycled Aggregate Concrete with Respect to Replacement Ratios. J. Korean Soc. Civ. Eng. 2006, 26, 213–218. [Google Scholar]
- Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens; ASTM: West Conshohocken, PA, USA, 2003; ASTM C39/C39M-99.
- Standard Test Method for Slump of Hydraulic-Cement Concrete; ASTM: West Conshohocken, PA, USA, 2003; ASTM C143-03.
- Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method; ASTM: West Conshohocken, PA, USA, 2004; ASTM C231-04. [CrossRef]
- Li, Z. Advanced Concrete Technology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Standard Test Method for Static Modulus of Elasticity and Poisson’ s Ratio of Concrete; ASTM: West Conshohocken, PA, USA, 1994; ASTM C469-94. [CrossRef]
- Usman, M.; Khan, A.Y.; Farooq, S.H.; Hanif, A.; Tang, S.; Khushnood, R.A.; Rizwan, S.A. Eco-friendly self-compacting cement pastes incorporating wood waste as cement replacement: A feasibility study. J. Clean. Prod. 2018, 190, 679–688. [Google Scholar] [CrossRef]
- Neville, A.M. Properties of Concrete, 4th ed.; Pearson Education, Inc.: London, UK, 2004; ISBN 0-582-23070-5. [Google Scholar]
- Rasheed, A.; Usman, M.; Farooq, H.; Hanif, A. Effect of Super-plasticizer Dosages on Fresh State Properties and Early-Age Strength of Concrete. IOP Conf. Ser. Mater. Sci. Eng. 2018, 431, 062010. [Google Scholar] [CrossRef]
- de Brito, J.; Saikia, N. Recycled Aggregate in Concrete Use of Industrial, Construction and Demolition Waste; Springer: London, UK, 2013; ISBN 9781447145400. [Google Scholar]
- Osborne, G.J. Durability of Portland blast-furnace slag cement concrete. Cem. Concr. Compos. 1999, 21, 11–21. [Google Scholar] [CrossRef]
- Wade, S. Evaluation of the Maturity Method to Estimate Concrete Strength. Mater’s Thesis, Auburn University, Auburn, AL, USA, 2005. [Google Scholar]
- Wedding, P.; Carino, N. The Maturity Method: Theory and Application. Cem. Concr. Aggreg. 1984, 6, 61. [Google Scholar] [CrossRef]
- Poon, C.S.; Chan, D. Paving blocks made with recycled concrete aggregate and crushed clay brick. Constr. Build. Mater. 2006, 20, 569–577. [Google Scholar] [CrossRef]
- Vázquez, E. Progress of Recycling in the Built Environment; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8, ISBN 9788578110796. [Google Scholar]
Raw Materials | Maximum Particle Size (mm) | Specific Gravity | Water Absorption (%) | |
---|---|---|---|---|
Coarse Aggregate | Natural | 25 | 2.69 | 0.91 |
Recycled | 2.54 | 2.16 | ||
Fine Aggregate | Natural | 5 | 2.60 | 0.92 |
Recycled | 2.44 | 5.17 | ||
Cement | Ordinary Portland | - | 3.14 | - |
Moderately High Early Strength | 3.17 | - |
Variable | W/C | S/a | Unit Weight (kg/m3) | |||||
---|---|---|---|---|---|---|---|---|
W | C | Fine Aggregate | Coarse Aggregate | |||||
Natural | Recycled | Natural | Recycled | |||||
O-N-60-4 | 36.4 | 43.8 | 155 | 425 | 751 | 0 | 998 | 0 |
M-N-series | 155 | 429 | 751 | 0 | 998 | 0 | ||
M-R-series | 155 | 429 | 451 | 282 | 399 | 565 | ||
O-R-series | 155 | 425 | 451 | 282 | 399 | 565 |
Mix ID | Binder Type * | Coarse Aggregate | Fine Aggregate | Curing | |||
---|---|---|---|---|---|---|---|
Natural | Recycled | Natural | Recycled | M.T. ** | T.D. *** | ||
O-N-60-4 | O | 100% | 0% | 100% | 0% | 60 °C | 4 h |
M-N-50-0 | M | 100% | 0% | 100% | 0% | 50 °C | 0 h |
M-N-50-1 | 1 h | ||||||
M-N-50-2 | 2 h | ||||||
M-N-60-0 | 60 °C | 0 h | |||||
M-N-60-1 | 1 h | ||||||
M-N-60-2 | 2 h | ||||||
M-N-70-0 | 70 °C | 0 h | |||||
M-N-70-1 | 1 h | ||||||
M-N-70-2 | 2 h | ||||||
M-R-50-0 | 40% | 60% | 60% | 40% | 50 °C | 0 h | |
M-R-50-1 | 1 h | ||||||
M-R-50-2 | 2 h | ||||||
M-R-60-0 | 60 °C | 0 h | |||||
M-R-60-1 | 1 h | ||||||
M-R-60-2 | 2 h | ||||||
M-R-70-0 | 70 °C | 0 h | |||||
M-R-70-1 | 1 h | ||||||
M-R-70-2 | 2 h | ||||||
O-R-50-0 | O | 40% | 60% | 60% | 40% | 50 °C | 0 h |
O-R-50-1 | 1 h | ||||||
O-R-50-2 | 2 h | ||||||
O-R-60-0 | 60 °C | 0 h | |||||
O-R-60-1 | 1 h | ||||||
O-R-60-2 | 2 h | ||||||
O-R-70-0 | 70 °C | 0 h | |||||
O-R-70-1 | 1 h | ||||||
O-R-70-2 | 2 h |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanif, A.; Kim, Y.; Usman, M.; Park, C. Optimization of Steam-Curing Regime for Recycled Aggregate Concrete Incorporating High Early Strength Cement—A Parametric Study. Materials 2018, 11, 2487. https://doi.org/10.3390/ma11122487
Hanif A, Kim Y, Usman M, Park C. Optimization of Steam-Curing Regime for Recycled Aggregate Concrete Incorporating High Early Strength Cement—A Parametric Study. Materials. 2018; 11(12):2487. https://doi.org/10.3390/ma11122487
Chicago/Turabian StyleHanif, Asad, Yongjae Kim, Muhammad Usman, and Cheolwoo Park. 2018. "Optimization of Steam-Curing Regime for Recycled Aggregate Concrete Incorporating High Early Strength Cement—A Parametric Study" Materials 11, no. 12: 2487. https://doi.org/10.3390/ma11122487
APA StyleHanif, A., Kim, Y., Usman, M., & Park, C. (2018). Optimization of Steam-Curing Regime for Recycled Aggregate Concrete Incorporating High Early Strength Cement—A Parametric Study. Materials, 11(12), 2487. https://doi.org/10.3390/ma11122487