Cyclic Deformation and Correspondent Crack Initiation at Low-Stress Amplitudes in Mg–Gd–Y–Zr Alloy
Abstract
:1. Introduction
2. Material and Experimental Methods
3. Results and Discussions
3.1. Microstructure and Texture
3.2. Cyclic Deformation at Low-Stress Amplitudes
3.3. Fatigue Crack Initiation Mechanism
4. Conclusions
- At the stress amplitudes below 130 MPa, both twinning and non-basal slip were barely activated. Plastic deformation is mainly accommodated by basal slip. This could be ascribed to increased critical resolved shear stress in polycrystalline Mg alloys;
- Low-stress deformation in Mg alloy was extremely inhomogeneous, due to its limited slip systems. Slip markings were restricted within isolated grains that have favorable orientation for the basal slip;
- Fatigue cracks always initiated along surface slip bands, and then propagated into the matrix straightly along basal plane, resulting in facet morphologies at fracture surface;
- Since basal slip was responsible for predominant deformation and fatigue crack initiation, introducing of specific microstructure or interfaces that are capable of hindering <a> dislocation may significantly improve high cycle fatigue strength.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rokhlin, L.L. Magnesium Alloys Containing Rare Earth Metals: Structure and Properties; Crc Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Mirza, F.A.; Chen, D.L.; Li, D.J.; Zeng, X.Q. Effect of rare earth elements on deformation behavior of an extruded Mg–10Gd–3Y–0.5Zr alloy during compression. Mater. Des. 2013, 46, 411–418. [Google Scholar] [CrossRef]
- Mirza, F.; Chen, D.; Li, D.; Zeng, X. Cyclic deformation behavior of a rare-earth containing extruded magnesium alloy: Effect of heat treatment. Metall. Mater. Trans. A 2015, 46, 1168–1187. [Google Scholar] [CrossRef]
- Wang, F.; Dong, J.; Jiang, Y.; Ding, W. Cyclic deformation and fatigue of extruded Mg–Gd–Y magnesium alloy. Mater. Sci. Eng. A 2013, 561, 403–410. [Google Scholar] [CrossRef]
- Dong, S.; Jiang, Y.; Dong, J.; Wang, F.; Ding, W. Cyclic deformation and fatigue of extruded ZK60 magnesium alloy with aging effects. Mater. Sci. Eng. A 2014, 615, 262–272. [Google Scholar] [CrossRef]
- Dong, S.; Wang, F.; Wan, Q.; Dong, J.; Ding, W.; Jiang, Y. Aging effects on cyclic deformation and fatigue of extruded Mg–Gd–Y–Zr alloy. Mater. Sci. Eng. A 2015, 641, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Lv, F.; Yang, X.M.; Li, S.X.; Zhang, Z.F.; Wang, Q.D. Enhanced very high cycle fatigue performance of extruded Mg–12Gd–3Y–0.5Zr magnesium alloy. Materi. Sci. Eng. A 2011, 528, 2231–2238. [Google Scholar] [CrossRef]
- Yang, F.; Yin, S.; Li, S.; Zhang, Z. Crack initiation mechanism of extruded AZ31 magnesium alloy in the very high cycle fatigue regime. Mater. Sci. Eng. A 2008, 491, 131–136. [Google Scholar] [CrossRef]
- Koyama, M.; Yamamura, Y.; Che, R.Q.; Sawaguchi, T.; Tsuzaki, K.; Noguchi, H. Comparative study on small fatigue crack propagation between Fe–30Mn–3Si–3Al and Fe–23Mn–0.5C twinning-induced plasticity steels: Aspects of non-propagation of small fatigue cracks. Int. J. Fatigue 2017, 94, 1–5. [Google Scholar] [CrossRef]
- Ali, Y.; Qiu, D.; Jiang, B.; Pan, F.; Zhang, M.-X. Current research progress in grain refinement of cast magnesium alloys: A review article. J. Alloys Compd. 2015, 619, 639–651. [Google Scholar] [CrossRef]
- Wu, L.; Jain, A.; Brown, D.; Stoica, G.; Agnew, S.; Clausen, B.; Fielden, D.; Liaw, P. Twinning–detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought magnesium alloy, ZK60A. Acta Mater. 2008, 56, 688–695. [Google Scholar] [CrossRef]
- Imandoust, A.; Barrett, C.; Al-Samman, T.; Inal, K.; El Kadiri, H. A review on the effect of rare-earth elements on texture evolution during processing of magnesium alloys. J. Mater. Sci. 2017, 52, 1–29. [Google Scholar] [CrossRef]
- Hutchinson, W.B.; Barnett, M.R. Effective values of critical resolved shear stress for slip in polycrystalline magnesium and other hcp metals. Scr. Mater. 2010, 63, 737–740. [Google Scholar] [CrossRef]
- Rokhlin, L.L. Magnesium Alloys Containing Rare Earth Metals; Taylor and Francis: London, UK, 2003. [Google Scholar]
- Forsyth, P. Exudation of material from slip bands at the surface of fatigued crystals of an aluminium–copper alloy. Nature 1953, 171, 172. [Google Scholar] [CrossRef]
- Polák, J.; Man, J.; Vystavěl, T.; Petrenec, M. The shape of extrusions and intrusions and initiation of stage I fatigue cracks. Mater. Sci. Eng. A 2009, 517, 204–211. [Google Scholar] [CrossRef]
- Sangid, M.D. The physics of fatigue crack initiation. Int. J. Fatigue 2013, 57, 58–72. [Google Scholar] [CrossRef]
- He, C.; Liu, Y.J.; Li, J.K.; Yang, K.; Wang, Q.Y.; Chen, Q. Very-high-cycle fatigue crack initiation and propagation behaviours of magnesium alloy ZK60. Mater. Sci. Tech. 2018, 34, 639–647. [Google Scholar] [CrossRef]
- Ceschini, L.; Morri, A.; Angelini, V.; Messieri, S. Fatigue behavior of the rare earth rich EV31A Mg alloy: Influence of plasma electrolytic oxidation. Metals 2017, 7, 212. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Q.; Luo, A.A.; Peng, L.; Zhang, P. Fatigue behavior and life prediction of cast magnesium alloys. Mater. Sci. Eng. A 2015, 647, 113–126. [Google Scholar] [CrossRef]
- Davidson, D.L.; Eylon, D. Titanium alloy fatigue fracture facet investigation by selected area electron channeling. Metall. Trans. A 1980, 11, 837–843. [Google Scholar] [CrossRef]
- Jha, S.K.; Szczepanski, C.J.; Golden, P.J.; Porter, W.J.; John, R. Characterization of fatigue crack-initiation facets in relation to lifetime variability in Ti–6Al–4V. Int. J. Fatigue 2012, 42, 248–257. [Google Scholar] [CrossRef]
- Dong, J.; Liu, W.; Song, X.; Zhang, P.; Ding, W.; Korsunsky, A. Influence of heat treatment on fatigue behaviour of high-strength Mg–10Gd–3Y alloy. Mater. Sci. Eng. A 2010, 527, 6053–6063. [Google Scholar] [CrossRef]
- Chamos, A.; Pantelakis, S.G.; Haidemenopoulos, G.; Kamoutsi, E. Tensile and fatigue behaviour of wrought magnesium alloys AZ31 and AZ61. Fatigue Fract. Eng. Mater. Struct. 2008, 31, 812–821. [Google Scholar] [CrossRef]
- Stanford, N.; Atwell, D.; Barnett, M.R. The effect of Gd on the recrystallisation, texture and deformation behaviour of magnesium-based alloys. Acta Mater. 2010, 58, 6773–6783. [Google Scholar] [CrossRef]
Maximum Stress | Maximum Strain | Fatigue Life |
---|---|---|
110 MPa | 0.244% | No failure |
120 MPa | 0.266% | 3.51 × 105 cycles |
130 MPa | 0.288% | 2.39 × 104 cycles |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, C.; Wu, Y.; Peng, L.; Su, N.; Li, X.; Yang, K.; Liu, Y.; Yuan, S.; Tian, R. Cyclic Deformation and Correspondent Crack Initiation at Low-Stress Amplitudes in Mg–Gd–Y–Zr Alloy. Materials 2018, 11, 2429. https://doi.org/10.3390/ma11122429
He C, Wu Y, Peng L, Su N, Li X, Yang K, Liu Y, Yuan S, Tian R. Cyclic Deformation and Correspondent Crack Initiation at Low-Stress Amplitudes in Mg–Gd–Y–Zr Alloy. Materials. 2018; 11(12):2429. https://doi.org/10.3390/ma11122429
Chicago/Turabian StyleHe, Chao, Yujuan Wu, Liming Peng, Ning Su, Xue Li, Kun Yang, Yongjie Liu, Shucheng Yuan, and Renhui Tian. 2018. "Cyclic Deformation and Correspondent Crack Initiation at Low-Stress Amplitudes in Mg–Gd–Y–Zr Alloy" Materials 11, no. 12: 2429. https://doi.org/10.3390/ma11122429
APA StyleHe, C., Wu, Y., Peng, L., Su, N., Li, X., Yang, K., Liu, Y., Yuan, S., & Tian, R. (2018). Cyclic Deformation and Correspondent Crack Initiation at Low-Stress Amplitudes in Mg–Gd–Y–Zr Alloy. Materials, 11(12), 2429. https://doi.org/10.3390/ma11122429