Figure 1.
SEM observations of the powder morphology: (a,b) Al6061 powder, (c,d) AlSi10Mg powder.
Figure 1.
SEM observations of the powder morphology: (a,b) Al6061 powder, (c,d) AlSi10Mg powder.
Figure 2.
Particle size distribution of the Al6061 and AlSi10Mg powders.
Figure 2.
Particle size distribution of the Al6061 and AlSi10Mg powders.
Figure 3.
XRD phase patterns of the Al6061 and AlSi10Mg powders.
Figure 3.
XRD phase patterns of the Al6061 and AlSi10Mg powders.
Figure 4.
Pores observed inside the as-built AlSi10Mg sample fabricated with different SLM parameters; (a,d) AS8, (b,e) AS3, and (c,f) AS1.
Figure 4.
Pores observed inside the as-built AlSi10Mg sample fabricated with different SLM parameters; (a,d) AS8, (b,e) AS3, and (c,f) AS1.
Figure 5.
Relative density of the as-built AlSi10Mg samples vs. (a) laser power (W), (b) energy density (J/mm3), (c) hatch spacing (mm), and (d) scan speed (mm/s).
Figure 5.
Relative density of the as-built AlSi10Mg samples vs. (a) laser power (W), (b) energy density (J/mm3), (c) hatch spacing (mm), and (d) scan speed (mm/s).
Figure 6.
Pores observed inside the as-built Al6061 samples processed through different SLM parameters; (a,d) 8A, (b,e) 4A, and (c,f) 1A.
Figure 6.
Pores observed inside the as-built Al6061 samples processed through different SLM parameters; (a,d) 8A, (b,e) 4A, and (c,f) 1A.
Figure 7.
Relative density of the as-built Al6061 samples vs. (a) laser power (W), (b) energy density (J/mm3), (c) hatch spacing (mm), and (d) scan speed (mm/s).
Figure 7.
Relative density of the as-built Al6061 samples vs. (a) laser power (W), (b) energy density (J/mm3), (c) hatch spacing (mm), and (d) scan speed (mm/s).
Figure 8.
SEM observations of the as-built surface of AlSi10Mg samples; (a,d) AS8, (b,e) AS3, and (c,f) AS1.
Figure 8.
SEM observations of the as-built surface of AlSi10Mg samples; (a,d) AS8, (b,e) AS3, and (c,f) AS1.
Figure 9.
The 3D surface texture of the as-built AlSi10Mg samples; (a) AS8, (b) AS6, (c) AS3, and (d) AS1.
Figure 9.
The 3D surface texture of the as-built AlSi10Mg samples; (a) AS8, (b) AS6, (c) AS3, and (d) AS1.
Figure 10.
Surface roughness of the as-built AlSi10Mg samples vs. (a) laser power (W), (b) energy density (J/mm3), (c) hatch spacing (mm), and (d) scan speed (mm/s).
Figure 10.
Surface roughness of the as-built AlSi10Mg samples vs. (a) laser power (W), (b) energy density (J/mm3), (c) hatch spacing (mm), and (d) scan speed (mm/s).
Figure 11.
SEM observations of the as-built surface of Al6061 samples; (a,d) 7A, (b,e) 14A, and (c,f) 1A.
Figure 11.
SEM observations of the as-built surface of Al6061 samples; (a,d) 7A, (b,e) 14A, and (c,f) 1A.
Figure 12.
3D surface texture of the as-built Al6061 samples; (a) 8A, (b) 6A, (c) 14A, and (d) 11A.
Figure 12.
3D surface texture of the as-built Al6061 samples; (a) 8A, (b) 6A, (c) 14A, and (d) 11A.
Figure 13.
Surface roughness of the as-built Al6061 samples vs. (a) laser power (W), (b) energy density (J/mm3), (c) hatch spacing (mm), and (d) scan speed (mm/s).
Figure 13.
Surface roughness of the as-built Al6061 samples vs. (a) laser power (W), (b) energy density (J/mm3), (c) hatch spacing (mm), and (d) scan speed (mm/s).
Figure 14.
Dimension tolerance of the as-built AlSi10Mg samples vs. (a) laser power (W), (b) energy density (J/mm3), (c) hatch spacing (mm), and (d) scan speed (mm/s).
Figure 14.
Dimension tolerance of the as-built AlSi10Mg samples vs. (a) laser power (W), (b) energy density (J/mm3), (c) hatch spacing (mm), and (d) scan speed (mm/s).
Figure 15.
Surface flatness of the as-built AlSi10Mg samples vs. (a) laser power (W), (b) energy density (J/mm3), (c) hatch spacing (mm), and (d) scan speed (mm/s).
Figure 15.
Surface flatness of the as-built AlSi10Mg samples vs. (a) laser power (W), (b) energy density (J/mm3), (c) hatch spacing (mm), and (d) scan speed (mm/s).
Figure 16.
Dimension tolerance of the as-built Al6061 samples vs. (a) laser power (W), (b) energy density (J/mm3), (c) hatch spacing (mm), and (d) scan speed (mm/s).
Figure 16.
Dimension tolerance of the as-built Al6061 samples vs. (a) laser power (W), (b) energy density (J/mm3), (c) hatch spacing (mm), and (d) scan speed (mm/s).
Figure 17.
Surface flatness of the as-built Al6061 samples vs. (a) laser power (W), (b) eenergy density (J/mm3), (c) hatch spacing (mm), and (d) scan speed (mm/s).
Figure 17.
Surface flatness of the as-built Al6061 samples vs. (a) laser power (W), (b) eenergy density (J/mm3), (c) hatch spacing (mm), and (d) scan speed (mm/s).
Figure 18.
(a) Optimal processing window generated for the AlSi10Mg alloy at the hatch spacing value of 0.19 mm and the effect of laser power (W) and scan speed (mm/s) on (b) distance tolerance (mm), (c) relative density (%), and (d) surface roughness Ra (μm).
Figure 18.
(a) Optimal processing window generated for the AlSi10Mg alloy at the hatch spacing value of 0.19 mm and the effect of laser power (W) and scan speed (mm/s) on (b) distance tolerance (mm), (c) relative density (%), and (d) surface roughness Ra (μm).
Figure 19.
(a) Optimal processing window generated for the Al6061 alloy at the hatch spacing value of 0.15 mm and the effect of laser power (W) and scan speed (mm/s) on (b) distance tolerance (mm), (c) relative density (%) and (d) surface roughness Ra (μm).
Figure 19.
(a) Optimal processing window generated for the Al6061 alloy at the hatch spacing value of 0.15 mm and the effect of laser power (W) and scan speed (mm/s) on (b) distance tolerance (mm), (c) relative density (%) and (d) surface roughness Ra (μm).
Table 1.
The selective laser melting (SLM) process parameters used for building the AlSi10Mg samples. P: laser beam power, Vs: laser scan speed, Dh: hatch spacing between scan passes, Ed: energy density.
Table 1.
The selective laser melting (SLM) process parameters used for building the AlSi10Mg samples. P: laser beam power, Vs: laser scan speed, Dh: hatch spacing between scan passes, Ed: energy density.
Sample # | P (W) | Vs (mm/s) | Dh (mm) | Ed (J/mm3) |
---|
AS1 | 370 | 1000 | 0.19 | 65 |
AS2 | 370 | 1300 | 0.15 | 63.2 |
AS3 | 370 | 1300 | 0.19 | 50 |
AS4 | 350 | 1300 | 0.19 | 47.2 |
AS5 | 370 | 1500 | 0.19 | 43.3 |
AS6 | 300 | 1300 | 0.19 | 40.5 |
AS7 | 370 | 1300 | 0.25 | 38 |
AS8 | 200 | 1300 | 0.19 | 27 |
Table 2.
The SLM process parameters applied for fabricating the Al6061 samples.
Table 2.
The SLM process parameters applied for fabricating the Al6061 samples.
Sample # | P (W) | Vs (mm/s) | Dh (mm) | Ed (J/mm3) | Sample # | P (W) | Vs (mm/s) | Dh (mm) | Ed (J/mm3) |
---|
1A | 370 | 1000 | 0.1 | 123.3 | 11A | 370 | 800 | 0.15 | 102.8 |
2A | 300 | 1000 | 0.1 | 100 | 12A | 350 | 800 | 0.15 | 97.2 |
3A | 370 | 1300 | 0.1 | 95 | 13A | 370 | 800 | 0.19 | 81.1 |
4A | 300 | 1300 | 0.1 | 76.9 | 14A | 350 | 800 | 0.19 | 76.8 |
5A | 370 | 1000 | 0.19 | 65 | 15A | 370 | 1300 | 0.15 | 63.2 |
6A | 300 | 1000 | 0.19 | 52.6 | 16A | 350 | 1300 | 0.15 | 59.8 |
7A | 370 | 1300 | 0.19 | 50 | 17A | 370 | 1300 | 0.19 | 50 |
8A | 300 | 1300 | 0.19 | 40.5 | 18A | 350 | 1300 | 0.19 | 47.2 |
Table 3.
Energy X-ray dispersive spectroscopy (EDS) analysis of the Al6061 and AlSi10Mg powders’ chemical composition.
Table 3.
Energy X-ray dispersive spectroscopy (EDS) analysis of the Al6061 and AlSi10Mg powders’ chemical composition.
Element | Si | Mg | Cu | Fe | Al |
---|
Al6061 wt % | 1.2 | 0.77 | 0.32 | 0.90 | Balance |
AlSi10Mg wt % | 11.34 | 0.28 | 0.08 | 0.32 | Balance |
Table 4.
Values measured for the particle size distribution of the Al6061 and AlSi10Mg powders.
Table 4.
Values measured for the particle size distribution of the Al6061 and AlSi10Mg powders.
Sample Type | D (0.1) | D (0.5) | D (0.9) |
---|
Al6061 Powder | Diameter (μm) | 22.83 | 41.27 | 71.92 |
AlSi10Mg Powder | 23.16 | 39.62 | 66.55 |