# An Adaptive Speed Control Approach for DC Shunt Motors

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. DC Shunt Motor Model

## 3. Control Design Approaches Based on the Mathematical Model

#### 3.1. Linear Controller Design

#### 3.2. Super-Twisting Sliding Mode Control Design

## 4. Proposed Adaptive B-Spline Controller Design

## 5. Experimental Assessment of the DC Shunt Motor Control Scheme

#### 5.1. Description of the Test Platform

#### 5.2. Measurement Variables in the Laboratory Test Motor

## 6. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Sun, J.; Chai, Y.; Su, C.; Zhu, Z.; Luo, X. BLDC motor speed control system fault diagnosis based on LRGF neural network and adaptive lifting scheme. Appl. Soft Comput.
**2014**, 14, 609–622. [Google Scholar] [CrossRef] - Mekki, H.; Benzineb, O.; Boukhetala, D.; Tadjine, M.; Benbouzid, M. Sliding mode based fault detection reconstruction and fault tolerant control scheme for motor systems. ISA Trans.
**2015**, 57, 340–351. [Google Scholar] [CrossRef] [PubMed] - Li, C.-L.; Li, W.; Li, F.-D. Chaos induced in Brushless DC Motor via current time-delayed feedback. Optik
**2014**, 125, 6589–6593. [Google Scholar] [CrossRef] - Léchappé, V.; Salas, O.; de León, J.; Plestan, F.; Moulay, E.; Glumineau, A. Predictive control of disturbed systems with input delay: Experimental validation on a DC motor. IFAC
**2015**, 48, 292–297. [Google Scholar] - Tepljakov, A.; Gonzalez, E.A.; Petlenkov, E.; Belikov, J.; Monje, C.A.; Petrás, I. Incorporation of fractional-order dynamics into an existing PI/PID DC motor control loop. ISA Trans.
**2016**, 60, 262–273. [Google Scholar] [CrossRef] [PubMed] - Kanojiya, R.G.; Meshram, P.M. Optimal tuning of PI controller for speed control of DC motor drive using particle swarm optimization. In Proceedings of the IEEE International Conference on Advances in Power Conversion and Energy Technologies (APCET), Mylavaram, India, 2–4 August 2012.
- Jayaprakash, S. Comparison of solar based closed loop DC-DC converter using PID and Fuzzy Logic Control for Shunt motor drive. In Proceedings of the IEEE Conference on Emerging Trends In New & Renewable Energy Sources and Energy Management, Chennai, India, 16–17 December 2014.
- Wang, J.-J. A common sharing method for current and flux-linkage controlof switched reluctance motor. Electr. Power Syst. Res.
**2016**, 131, 19–30. [Google Scholar] [CrossRef] - Alyaqout, S.F.; Papalambros, P.Y.; Ulsoy, A.G. Combined robust design and robust control of an electric DC motor. IEEE/ASME Trans. Mechatron.
**2011**, 16, 574–582. [Google Scholar] [CrossRef] - Bai, R. Neural network control-based adaptive design for a class of DC motor Systems with the full state constraints. Neurocomputing
**2015**, 168, 65–69. [Google Scholar] [CrossRef] - Zaki, A.M.; El-Bardini, M.; Soliman, F.A.S.; Sharaf, M.M. Embedded two level direct adaptive fuzzy controller for DC motor speed control. Ain Shams Eng. J.
**2015**, in press. [Google Scholar] [CrossRef] - Krause, P.C.; Wasynczuk, O.; Sudhoff, S.D. Analysis of Electric Machinery and Drive Systems, 2nd ed.; Wiley-IEEE Press: Hoboken, NJ, USA, 2002. [Google Scholar]
- Topalov, A.V.; Cascella, G.L.; Giordano, V.; Cupertino, F.; Kaynak, O. Sliding mode neuro-adaptive control of electric drives. IEEE Trans. Ind. Electron.
**2007**, 54, 671–679. [Google Scholar] [CrossRef] - Naso, D.; Cupertino, F.; Turchiano, B. Precise position control of tubular linear motors with neural networks and composite learning. Control Eng. Pract.
**2010**, 18, 515–522. [Google Scholar] [CrossRef] - Tapia-Olvera, R.; Aguilar-Mejía, O.; Minor-Popocatl, H.; Santiago-Tepantlan, C. Power system stabilizer and secondary voltage regulator tuning for multimachine power systems. Electr. Power Compon. Syst.
**2012**, 40, 1751–1767. [Google Scholar] [CrossRef] - Aguilar-Mejía, O.; Tapia-Olvera, R.; Valderrabano-Gonzalez, A.; Cambero, I.R. Adaptive neural network control of chaos in permanent magnet synchronous motor. Intell. Autom. Soft Comput.
**2015**, 22, 499–507. [Google Scholar] [CrossRef] - Aguilar, O.; Tapia, R.; Valderrabano, A.; Minor, H. Design and performance comparison of PI and adaptive current controllers for a WECS. IEEE Lat. Am. Trans.
**2015**, 13, 1361–1368. [Google Scholar] - Brown, M.; Harris, C. Neurofuzzy Adaptive Modelling and Control; Prentice Hall International: Upper Saddle River, NJ, USA, 1994. [Google Scholar]
- Aguilera, A.M.; Aguilera-Morillo, M.C. Comparative study of different B-spline approaches for functional data. Math. Comput. Model.
**2013**, 58, 1568–1579. [Google Scholar] [CrossRef] - Deng, H.; Srinivasan, D.; Oruganti, R. A B-spline network based neural controller for power electronic applications. Neurocomputing
**2010**, 73, 593–601. [Google Scholar] [CrossRef] - Utkin, V.; Guldner, J.; Shi, J. Sliding Mode Control in Electro-Mechanical Systems, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Damiano, A.; Gatto, G.L.; Marongiu, I.; Pisano, A. Second-order sliding-mode control of DC drives. IEEE Trans. Ind. Electron.
**2004**, 51, 364–373. [Google Scholar] [CrossRef]

Load Torque ${\mathit{\tau}}_{\mathit{L}}$ (Nm) | Rotor Speed ω (rad/s) |
---|---|

0.5 | 30 |

0.3 | 100 |

1.25 | 50 |

1.1 | 70 |

0.4 | 120 |

0.75 | 45 |

Parameter | Value | Unit |
---|---|---|

${R}_{a}$ | 7.5 | Ω |

${R}_{f}$ | 469.75 | Ω |

${L}_{a}$ | 55.3 | mH |

${L}_{f}$ | 2.4123 | H |

${L}_{af}$ | 2.2881 | H |

J | 0.0013 | Kg·m${}^{2}$ |

b | 1 × 10${}^{-3}$ | N·m·s |

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Tapia-Olvera, R.; Beltran-Carbajal, F.; Aguilar-Mejia, O.; Valderrabano-Gonzalez, A.
An Adaptive Speed Control Approach for DC Shunt Motors. *Energies* **2016**, *9*, 961.
https://doi.org/10.3390/en9110961

**AMA Style**

Tapia-Olvera R, Beltran-Carbajal F, Aguilar-Mejia O, Valderrabano-Gonzalez A.
An Adaptive Speed Control Approach for DC Shunt Motors. *Energies*. 2016; 9(11):961.
https://doi.org/10.3390/en9110961

**Chicago/Turabian Style**

Tapia-Olvera, Ruben, Francisco Beltran-Carbajal, Omar Aguilar-Mejia, and Antonio Valderrabano-Gonzalez.
2016. "An Adaptive Speed Control Approach for DC Shunt Motors" *Energies* 9, no. 11: 961.
https://doi.org/10.3390/en9110961