Next Article in Journal
Reducing Carbon Emissions from Shopping Trips: Evidence from China
Previous Article in Journal
Online Energy Management of City Cars with Multi-Objective Linear Parameter-Varying L2-Gain Control
Open AccessArticle

Thermal Behaviour Investigation of a Large and High Power Lithium Iron Phosphate Cylindrical Cell

MOBI—Mobility, Logistics and Automotive Technology Research Centre, Vrije Universiteit Brussel, Pleinlaan, 2, 1050 Brussels, Belgium
Author to whom correspondence should be addressed.
Academic Editor: Sheng S. Zhang
Energies 2015, 8(9), 10017-10042;
Received: 19 May 2015 / Revised: 28 August 2015 / Accepted: 6 September 2015 / Published: 15 September 2015
This paper investigates the thermal behaviour of a large lithium iron phosphate (LFP) battery cell based on its electrochemical-thermal modelling for the predictions of its temperature evolution and distribution during both charge and discharge processes. The electrochemical-thermal modelling of the cell is performed for two cell geometry approaches: homogeneous (the internal region is considered as a single region) and discrete (the internal region is split into smaller regions for each layer inside the cell). The experimental measurements and the predictions of the cell surface temperature achieved with the simulations for both approaches are in good agreement with 1.5 °C maximum root mean square error. From the results, the maximum cell surface temperature and temperature gradient between the internal and the surface regions are around 31.3 °C and 1.6 °C. The temperature gradient in the radial direction is observed to be greater about 1.1 °C compared to the longitudinal direction, which is caused by the lower thermal conductivity of the cell in the radial compared to the longitudinal direction. During its discharge, the reversible, the ohmic and the reaction heat generations inside the cell reach up to 2 W, 7 W and 17 W respectively. From the comparison of the two modelling approaches, this paper establishes that the homogeneous modelling of the cell internal region is suitable for the study of a single cylindrical cell and is appropriate for the two-dimensional thermal behaviour investigation of a battery module made of multiple cells. View Full-Text
Keywords: thermal; lithium iron phosphate (LFP); battery cell; electrochemical-thermal thermal; lithium iron phosphate (LFP); battery cell; electrochemical-thermal
Show Figures

Figure 1

MDPI and ACS Style

Capron, O.; Samba, A.; Omar, N.; Van Den Bossche, P.; Van Mierlo, J. Thermal Behaviour Investigation of a Large and High Power Lithium Iron Phosphate Cylindrical Cell. Energies 2015, 8, 10017-10042.

Show more citation formats Show less citations formats

Article Access Map by Country/Region

Only visits after 24 November 2015 are recorded.
Search more from Scilit
Back to TopTop