Decomposition Analysis of the Mechanism Behind the Spatial and Temporal Patterns of Changes in Carbon Bio-Sequestration in China
Abstract
:1. Introduction
2. Data and Methodology
2.1. Methodology
2.2. Data Collection and Processing
Variables | Unit | Meaning | Average | Std | Minimum | Maximum |
---|---|---|---|---|---|---|
NPP | gC/m2·a−1 | Net primary productivity | 9062.791 | 4863.321 | 0 | 23224.4 |
Temp | °C | Temperature | 11.699 | 5.813 | −8.105 | 24 |
Rain | mm | Precipitation | 873.625 | 481.878 | 11.786 | 2418.6 |
Sun | h | Sunshine hour | 2098.945 | 547.804 | 837.500 | 3487.896 |
Ur | % | Relative humidity | 67.832 | 10.402 | 32.806 | 85.692 |
Pop | 104 person | Population | 50.205 | 49.105 | 0.504 | 1081.733 |
AgInvest | 104 yuan | Agricultural investment | 7.212 | 37.367 | 0.00152 | 1386.769 |
Irri | % | Irrigation rate | 0.48 | 0.184 | 0.151 | 0.999 |
Gdp | 104 yuan | Gross domestic product | 30.248 | 85.433 | 0.209 | 3648.774 |
Denhighf | km | Density of highway | 0.0306 | 0.0972 | 0 | 0.920 |
Sgdp_2 | % | Share of the second industry in total GDP | 0.344 | 0.152 | 0.0217 | 0.927 |
Sgdp_3 | % | Share of the tertiary industry in total GDP | 0.287 | 0.0957 | 0.0166 | 0.907 |
Splain | % | Share of plain area | 0.332 | 0.376 | 0 | 1 |
Dem | m | Altitude | 873.029 | 1113.1 | 0 | 5162 |
Slo | ° | Slope | 3.029 | 2.976 | 0 | 17.38 |
Soil_n | mg/kg | Nitrogen content in soil | 0.173 | 0.166 | 0 | 2.38 |
2.2.1. Carbon Bio-Sequestration
2.2.2. Climatic Factors
2.2.3. Land Use Factors
2.2.4. Geophysical Factors
2.2.5. Transportation and Location Factors
2.2.6. Socio-Economic Factors
3. Results
3.1. Results of the Fixed Effect Model
ln(npp) | ||||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
Lntemp | 0.021 (5.39) *** | 0.029 (7.19) *** | 0.029 (6.43) *** | 0.028 (6.18) *** | 0.027 (5.84) *** | 0.040 (7.79) *** |
Lnrain | 0.028 (5.98) *** | 0.029 (6.16) *** | 0.054 (9.51) *** | 0.054 (9.28) *** | 0.050 (8.54) *** | 0.052 (8.57) *** |
Lnsun | 0.051 (4.05) *** | 0.069 (5.40) *** | 0.042 (3.10) *** | 0.035 (2.52) ** | 0.049 (3.39) *** | 0.111 (7.06) *** |
Ur | 0.002 (4.08) *** | 0.002 (5.22) *** | 0.002 (4.71) *** | 0.002 (4.66) *** | 0.003 (5.62) *** | 0.004 (7.01) *** |
lnnpp1988 | 0.933 (188.15) *** | 0.933 (186.94) *** | 0.912 (166.98) *** | 0.909 (163.75) *** | 0.913 (162.71) *** | 0.910 (159.10) *** |
Lnpop | −0.018 (7.34) *** | −0.017 (6.39) *** | −0.028 (6.39) *** | −0.018 (3.46) *** | −0.017 (3.40) *** | |
lnAgInvest | 0.005 (5.33) *** | 0.005 (4.97) *** | 0.005 (5.13) *** | 0.004 (4.33) *** | ||
Irri | 0.123 (10.69) *** | 0.118 (9.34) *** | 0.119 (9.50) *** | 0.146 (11.47) *** | ||
Lngdp | 0.009 (2.98) *** | −0.003 (0.67) | 0.008 (1.76) * | |||
Lndenhighf | −0.001 (1.66) * | −0.001 (1.84) * | −0.001 (1.72) * | |||
Sgdp_2 | 0.066 (3.58) *** | 0.049 (2.70) *** | ||||
Sgdp_3 | 0.090 (3.99) *** | 0.055 (2.43) ** | ||||
Splain | −0.017 (1.81) * | |||||
Lndem | 0.012 (5.84) *** | |||||
Lnslo | −0.002 (1.08) | |||||
lnsoil_n | 0.013 (3.11) *** | |||||
Constant | −0.153 (1.28) | −0.287 (2.38) ** | −0.136 (1.05) | −0.041 (0.30) | −0.252 (1.76) * | −0.860 (5.54) *** |
Observations | 4406 | 4372 | 3870 | 3845 | 3845 | 3845 |
R-squared | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 |
3.2. Results of the Random Effect Model
Ln(npp) | ||||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
Lntemp | 0.300 (30.16) *** | 0.272 (25.96) *** | 0.244 (22.19) *** | 0.270 (22.55) *** | 0.273 (22.65) *** | 0.276 (22.50) *** |
Lnrain | 0.051 (4.60) *** | 0.049 (4.48) *** | 0.083 (7.62) *** | 0.134 (10.89) *** | 0.135 (10.96) *** | 0.137 (10.99) *** |
Lnsun | 0.111 (2.59) *** | 0.065 (1.51) | 0.031 (0.74) | 0.057 (1.30) | 0.060 (1.35) | 0.072 (1.54) |
Ur | 0.027 (20.42) *** | 0.025 (18.64) *** | 0.021 (15.26) *** | 0.021 (14.40) *** | 0.021 (14.22) *** | 0.021 (14.22) *** |
Lnpop | 0.074 (7.14) *** | −0.019 (1.40) | 0.018 (1.22) | 0.016 (1.03) | 0.018 (1.16) | |
Lngdp | 0.083 (12.48) *** | 0.034 (4.21) *** | 0.036 (3.72) *** | 0.038 (3.80) *** | ||
LnAgInvest | 0.001 (0.22) | 0.001 (0.18) | 0.000 (0.13) | |||
Irri | 0.357 (10.49) *** | 0.351 (10.25) *** | 0.355 (10.32) *** | |||
Sgdp_2 | −0.041 (0.98) | −0.043 (1.03) | ||||
Sgdp_3 | 0.049 (1.10) | 0.045 (1.01) | ||||
Constant | 5.239 (13.09) *** | 5.542 (13.90) *** | 6.046 (15.30) *** | 5.277 (12.73) *** | 5.260 (12.49) *** | 5.107 (11.24) *** |
Observations | 4406 | 4372 | 4302 | 3845 | 3845 | 3845 |
R-squared | 0.0408 | 0.0483 | 0.1126 | 0.1304 | 0.1323 | 0.1323 |
3.3. Decomposition Analysis
Variables | (1) Estimated parameter | (2) Percentage changes in variables | (3) Impact on carbon bio-sequestration (%) | (4) Contribution (%) |
---|---|---|---|---|
Based on Column 5 in Table 3 | ||||
Temperature | 0.276 | 1.01 | 0.280 | 4.083 |
Rainfall | 0.137 | 1.21 | 0.166 | 2.418 |
Sunshine | 0.072 | −3.37 | −0.243 | −3.546 |
Relative humanity | 0.021 | 2.26 | 0.047 | 0.693 |
GDP | 0.038 | 52.58 | 1.998 | 29.175 |
AgInvest | 0.000 | 2.89 | 0.000 | 0.000 |
Irrigation rate | 0.355 | 13.17 | 4.677 | 68.289 |
Sgdp_2 | −0.043 | 5.69 | −0.245 | −3.572 |
Sgdp_3 | 0.045 | 15.24 | 0.686 | 10.014 |
Residual | −0.517 | −7.55 | ||
NPP change | 6.85 | 100 |
4. Discussion and Conclusions
Acknowledgements
References
- IPCC. Climate Change 2001: The Scientific Basis; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Hughen, K.; Lehman, S.; Southon, J.; Overpeck, J.; Marchal, O.; Herring, C.; Turnbull, J. 14C activity and global carbon cycle changes over the past 50,000 years. Science 2004, 303, 202–207. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Land Use, Land-Use Change, and Forestry: A Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- IGBP Terrestrial Carbon Working Group. The terrestrial carbon cycle: Implication for the Kyotol protocol. Science 1998, 280, 1393–1394. [Google Scholar]
- Hardisty, P.E.; Sivapalan, M.; Brooks, P. The environmental and economic sustainability of carbon capture and storage. Int. J. Environ. Res. Public Health 2011, 8, 1460–1477. [Google Scholar] [CrossRef] [PubMed]
- Butterworth, W. The Technology of waste, biofuels and global warming in viable closed loop, sustainable operations. Energies 2009, 2, 1192–1200. [Google Scholar] [CrossRef]
- Lynch, D.; Macrae, R.; Martin, R. The carbon and global warming potential impacts of organic farming: Does it have a significant role in an energy constrained world? Sustainability 2011, 3, 322–362. [Google Scholar] [CrossRef]
- Cramer, W.; Kicklighter, D.; Bondeau, A.; Moore, B.; Churkina, C.; Nemry, B.; Ruimy, A.; Schloss, A.L. Comparing global models of terrestrial net primary productivity (NPP): Overview and key results. Glob. Change Biol. 1999, 5, 1–15. [Google Scholar] [CrossRef]
- Ahl, D.E.; Gower, S.T.; Mackay, D.S.; Burrowsa, S.N.; Normanc, J.M.; Diakd, G.R. The effects of aggregated land cover data on estimating NPP in northern Wisconsin. Remote Sens. Environ. 2005, 97, 1–14. [Google Scholar] [CrossRef]
- Gao, Z.; Liu, J.; Cao, M.; Li, K.; Tao, B. Impacts of land-use and climate changes on ecosystem productivity and carbon cycle in the cropping-grazing transitional zone in China. Sci. China Ser. D 2005, 48, 1479–1491. [Google Scholar] [CrossRef]
- Potter, C.; Klooster, S.; Tan, P.; Steinbachc, M.; Kumarc, V.; Genoveseb, V. Variability in terrestrial carbon sinks over two decades: Part 2—Eurasia. Glob. Planet. Change 2005, 49, 177–186. [Google Scholar] [CrossRef]
- Liski, J.; Perruchoud, D.; Karjalainen, T. Increasing carbon stocks in the forest soils of western Europe. For. Ecol. Manag. 2002, 169, 159–175. [Google Scholar] [CrossRef]
- Houghton, R.; Hackler, J.; Lawrence, K. The US carbon budget: Contributions from land-use change. Science. 1999, 285, 574–578. [Google Scholar] [CrossRef] [PubMed]
- Sha, W.; Shao, X.; Huang, M. Climate warming and its impact on natural regional boundaries in China in the 1980s. Sci. China Ser. D 2002, 45, 1099–1113. [Google Scholar] [CrossRef]
- Goudriaan, J. Global carbon cycle and carbon bio-sequestration. In Carbon Sequestration in the Biosphere-Processes and Prospects; Springer Verlag, Heidelberg: Berlin, Germany, 1995; pp. 3–18. [Google Scholar]
- Mohamed, M.; Babiker, I.; Chen, Z.; Ikedaa, K.; Ohtaa, K.; Katoa, K. The role of climate variability in the inter-annual variation of terrestrial net primary production (NPP). Sci. Total Environ. 2004, 332, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Cox, P.M.; Betts, R.A.; Jones, C.D.; Spall, S.A.; Totterdell, I.J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 2000, 408, 184–187. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, J.; Cihlar, J.; Park, W.M. A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote Sens. Environ. 1997, 62, 158–175. [Google Scholar] [CrossRef]
- Gao, Z.; Liu, J.; Cao, M. Impacts of land use and climate change on regional net primary productivity. J. Geogr. Sci. 2004, 3, 349–358. [Google Scholar]
- Wang, J.; Chen, J.; Ju, W.; Li, M. IA-SDSS: A GIS-based land use decision support system with consideration of carbon bio-sequestration. Environ. Model. Softw. 2010, 25, 539–553. [Google Scholar] [CrossRef]
- Kawase, R.; Matsuoka, Y.; Fujino, J. Decomposition analysis of CO2 emission in long-term climate stabilization scenarios. Energy Policy 2006, 34, 2113–2122. [Google Scholar] [CrossRef]
- Prince, S.D.; Goward, S.N. Global primary production: A remote sensing approach. J. Biogeogr. 1995, 815–835. [Google Scholar] [CrossRef]
- Yang, J.; Prince, S.D. A theoretical assessment of the relation between woody canopy cover and red reflectance. Remote Sens. Environ. 1997, 59, 428–439. [Google Scholar] [CrossRef]
- Cao, M.; Prince, S.D.; Li, K.; Tao, B.; Small, J.; Shao, X. Response of terrestrial carbon uptake to climate interannual variability in China. Glob. Change Biol. 2003, 9, 536–546. [Google Scholar] [CrossRef]
- Mardikis, M.; Kalivas, D.; Kollias, V. Comparison of interpolation methods for the prediction of reference evapotranspiration—An application in Greece. Water Resour. Manag. 2005, 19, 251–278. [Google Scholar] [CrossRef]
- Deng, X.; Huang, J.; Rozelle, S.; Uchida, E. Growth, population and industrialization and urban land expansion of China. J. Urban Econ. 2008, 63, 96–115. [Google Scholar] [CrossRef]
- Deng, X.; Huang, J.; Rozelle, S.; Uchida, E. Economic growth and the expansion of urban land in China. Urban Stud. 2010, 47, 813–843. [Google Scholar] [CrossRef]
- Deng, X.; Jiang, Q.; Su, H.; Wu, F. Trace forest conversions in Northeast China with a 1-km area percentage data model. J. Appl. Remote Sens. 2010, 4, 1–13. [Google Scholar] [CrossRef]
- Liu, X.H.; Wang, J.F.; Liu, M.L.; Meng, B. Spatial heterogeneity of the driving forces of cropland change in China. Sci. China Ser. D 2005, 48, 2231–2240. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, B.; Yang, Z.F. National water footprint in an input-output framework—A case study of China 2002. Ecol. Model. 2009, 220, 245–253. [Google Scholar] [CrossRef]
- Chen, G.Q.; Chen, B. Extended exergy analysis of the Chinese society. Energy 2009, 34, 1127–1144. [Google Scholar] [CrossRef]
- Zhou, J.B.; Jiang, M.M.; Chen, B.; Chen, G.Q. Emergy evaluations for constructed wetland and conventional wastewater treatments. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 1781–1789. [Google Scholar] [CrossRef]
- Chen, B.; Chen, G.Q.; Hao, F.H.; Yang, Z.F. Emergy-based energy and material metabolism of the Yellow River Basin. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 923–934. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zhan, J.; Yan, H.; Chen, B.; Luo, J.; Shi, N. Decomposition Analysis of the Mechanism Behind the Spatial and Temporal Patterns of Changes in Carbon Bio-Sequestration in China. Energies 2012, 5, 386-398. https://doi.org/10.3390/en5020386
Zhan J, Yan H, Chen B, Luo J, Shi N. Decomposition Analysis of the Mechanism Behind the Spatial and Temporal Patterns of Changes in Carbon Bio-Sequestration in China. Energies. 2012; 5(2):386-398. https://doi.org/10.3390/en5020386
Chicago/Turabian StyleZhan, Jinyan, Haiming Yan, Bin Chen, Jiao Luo, and Nana Shi. 2012. "Decomposition Analysis of the Mechanism Behind the Spatial and Temporal Patterns of Changes in Carbon Bio-Sequestration in China" Energies 5, no. 2: 386-398. https://doi.org/10.3390/en5020386
APA StyleZhan, J., Yan, H., Chen, B., Luo, J., & Shi, N. (2012). Decomposition Analysis of the Mechanism Behind the Spatial and Temporal Patterns of Changes in Carbon Bio-Sequestration in China. Energies, 5(2), 386-398. https://doi.org/10.3390/en5020386