Ash Management Review—Applications of Biomass Bottom Ash
Abstract
:1. Introduction
Proximate Analysis (wt %) | Rice husk | Rice husk pellet | Larch dust | Willow | Miscanthus | Pine |
---|---|---|---|---|---|---|
Moisture | 3.6 | 9.2 | 2.6 | 7.2 | 6.1 | 5.5 |
Volatile matter | 60 | 65.1 | 76.7 | 78.1 | 67.9 | 81.2 |
Ash | 16.3 | 9.3 | 0.8 | 1.0 | 12.9 | 1.2 |
Fixed carbon | 20.1 | 16.4 | 19.9 | 13.7 | 13.1 | 12.1 |
2. Ash from Biomass Combustion
Estimate of Potential Increase in Ash Production
Wood | Bulk density (ton/m3) Dry ash free tonnes |
---|---|
Hardwood chips | 0.23 |
Softwood chips | 0.18–0.19 |
Sawdust | 0.12 |
Planer Shavings | 0.10 |
Country | Ash from wood residue combustion (105 tons) | Ash from wood fuel combustion (105 tons) |
---|---|---|
China | 1.2–2.4 | 9.5–19.1 |
Brazil | 1.1–2.2 | 1.4–2.7 |
USA | 1.04–2.1 | 0.99–2.0 |
Russia | 0.63–1.3 | 1.99–4.0 |
France | 0.61–1.2 | 0.28–0.57 |
3. Elements in Ash of Environmental Significance
3.1. Presence of Metals in Ash
3.2. Applications of Ash for Soil Amendment and Agriculture
4. Technologies in Place for Processing Unburned Carbon in Ash as a Fuel
5. Reviews and Suggestions of Proposed Ash Processing Methods
Type of fuel ash fraction | Particle size (µm) | Bulk density (kg/m3) | |
---|---|---|---|
Sawdust | Grate fire ash | 10–30.000 | 662 |
Cyclone fly ash | 2–100 | 283 | |
Shredded Wood | Grate fire ash | 15–15.000 | 960 |
Cyclone fly ash | 2–160 | 430 |
6. Technological Implications When Processing Ash
Softening and Melting of Ash
7. Conclusions
Acknowledgments
References
- Demirbas, F.; Balat, M.; Balat, H. Potential contribution of biomass to sustainable energy development. Energy Convers. Manag. 2009, 50, 1746–1760. [Google Scholar] [CrossRef]
- Saidur, A.; Abdelaziz, E.; Demirbas, A.; Hossain, M.; Mekhilef, S. A review on biomass as a fuel for boilers. Renew. Sustain. Energy Rev. 2010, 15, 2262–2289. [Google Scholar] [CrossRef]
- Sandberg, J.; Karlsson, C.; Fdhila, R. A 7 year long measurement period investigating the correlation of corrosion, deposit and fuel in a biomass fired circulated fluidized bed boiler. Appl. Energy 2011, 88, 99–110. [Google Scholar] [CrossRef]
- Yoon, S.; Son, Y.; Kim, Y.; Lee, J. Gasification and power generation characteristics of rice husk and rice husk pellet using a downdraft fixed-bed gasifier. Renew. Energy 2011, 42, 1–5. [Google Scholar]
- Ryu, C.; Yang, Y.; Khor, A.; Yates, N.; Sharifi, V.; Swithenbank, J. Effect of fuel properties on biomass combustion: Part 1. Experiments-fuel type, equivalence ratio and particle size. Fuel 2006, 85, 1039–1046. [Google Scholar] [CrossRef]
- Gomez-Barea, A.; Vilches, L.; Campoy, M.; Fernandez-Pereira, C. Plant optimization and ash recycling in fluidised waste gasification. Chem. Eng. J. 2009, 146, 227–236. [Google Scholar] [CrossRef]
- Khan, A.; Jong, W.; Jansens, P.; Spliethoff, H. Biomass combustion in fluidized bed boilers: Potential problems and remidies. Fuel Process. Technol. 2009, 90, 21–50. [Google Scholar] [CrossRef]
- Demirbas, A. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog. Energy Combust. Sci. 2005, 31, 171–192. [Google Scholar] [CrossRef]
- Olanders, B.; Steenari, B. Characterization of ashes from wood and straw. Biomass Bioenergy 1994, 8, 105–115. [Google Scholar] [CrossRef]
- Quaak, P.; Knoef, H.; Stassen, H. Energy from Biomass, A Review of Combustion and Gasification Technologies; World Bank: Washington, DC, USA, 1999. [Google Scholar]
- FAO STAT. Available online: http://faostat3.fao.org/ (accessed on 15 June 2012).
- Thrän, D.; Kaltschmitt, M. Biomass for sustainable energy provision systems—State of technology, potentials and environmental aspects. In World Renewable Energy Congress VII; Sayigh, A.M., Ed.; Pergamon: Oxford, UK, 2002. [Google Scholar]
- Lövgren, L. Roll pelletizing of ash—Cost efficient handling and improved product with accelerated carbonatization. In Procedings of Conference on Ash Utilization 2012: Ashes in a Sustainable Society, Stockholm, Sweden, 25–27 January 2012.
- Van Alkemade, I.; Loo, S.; Sulilatu, W. Exploratory Investigations into the Possiblities of Processing Ash Produced in the Combustion of Reject Wood; Netherland Organization for Applied Scientific Research (TNO): Apeldoorn, The Netherlands, 1999. [Google Scholar]
- McKendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Obernberger, I.; Supancic, K. Possiblities of ash utilization from biomass combustion plants. In Proceedings of the 17th European Biomass Conference and Exhibition, Hamburg, Germany, 29 June–3 July 2009.
- Parikka, M. Global Biomass fuel resources. Biomass Bioenergy 2004, 27, 613–620. [Google Scholar] [CrossRef]
- Kaltschmitt, M.; Neubart, J. Biomass for Energy: An Option for Covering the Energy Demand and Contributing to the Reduction of GHG Emissions. In Integrating Biomass Energy with Agriculture, Forestry and Climate Change Policies in Europe; London, UK, December 2000. [Google Scholar]
- National Renewable Energy Laboratory (U.S.); United States. Department of Energy; United States. Department of Energy; Office of Scientific and Technical Information; Morris, G. The Value of the Benefits of U.S. Biomass Power; The Office of Scientific and Technical Information, U.S. Department of Energy: Washington, DC, USA, 2000.
- Vamvuka, D. Comparative fixed/fluidized bed experiments for the thermal behavious and environmental impact of oliive kernel ash. Renew. Energy 2009, 34, 158–164. [Google Scholar] [CrossRef]
- Wang, L.; Weller, C.; Jones, D.; Hanna, M. Contemporary issues in thermal gasification of biomass and its application to electricity and fuel production. Biomass Bioenergy 2008, 32, 573–581. [Google Scholar] [CrossRef]
- Nurmesniemi, H.; Manskinen, K.; Poykio, R.; Dahl, O. Forest fertilizer properties of the bottom ash and fly ash from a large-sized (115 MW) industrial power plant incinerating wood-based biomass residues. J. Univ. Chem. Technol. Met. 2012, 47, 43–52. [Google Scholar]
- Moilanen, M.; Pietilainen, P.; Issakainen, J. Longterm effects of apatite and biotite ont the nutrient status and stand growth of scots pine (Pinus sylvestris L.) on drained peatlands. Suo (Helsinki) 2005, 56, 115–128. [Google Scholar]
- Dahl, O.; Nurmesniemi, H.; Poykio, R.; Watkins, G. Heavy metal concentrations in bottom ash and fly ash fractions from a large-sized (246 MW) fluidized bed boiler with respect to their Finnish forest fertilizer limit values. Fuel Process. Technol. 2010, 91, 1634–1639. [Google Scholar] [CrossRef]
- Reijinders, L. Disposal, uses and treatments of combustion ashes: A review. Resor. Conserv. Recycl. 2005, 43, 313–336. [Google Scholar] [CrossRef]
- Minnesota Office of Environmental Services. Issue document: Managing Mn/DOT environmental liability resulting from use of regulates solid wastes in Mn/DOT administered transportation systems. Part 1 Coal ash. Available online: http://www.dot.state.mn.us/environment/research (accessed on 1 June 2012).
- Bahadori, A.; Vuthaluru, H. Estimation of potential saving from reducing unburned combustible losses in coal-fired sysytems. Appl. Energy 2010, 87, 3792–3799. [Google Scholar] [CrossRef]
- Duan, L.; Liu, D.; Chen, X.; Zhao, C. Fly ash recirculation by bottom feeding on aa circulating fluidized bed boiler co-burning coal sludge and coal. Appl. Energy 2012, 95, 295–299. [Google Scholar] [CrossRef]
- Turner, W.; Doty, S. Energy Management Handbook, 6th ed.; Fairmont Press: Lilburn, GA, USA, 2007. [Google Scholar]
- Batra, V.; Urbonaite, S.; Svensson, G. Characterization of unburned carbon in bagasse fy ash. Fuel 2008, 87, 2972–2976. [Google Scholar] [CrossRef]
- Overview of Gasification Technology. Available online: http://cturare.tripod.com/ove.htm (accessed on 13 March 2010).
- Rade, K.; Karamarkovic, V. Energy and exergy analysis of biomass gasification at different temperatures. Energy 2010, 35, 537–549. [Google Scholar] [CrossRef]
- Lövgren, L.; Lundmark, J.; Jansson, C. Adaptation for Recycling of Bio Asashes: Evaluation of New Technologies for Pelleting of Bio Ash with Respect to the Operational Characteristics, and Environmental Impacts in the Forest; Project P11647–1; Swedish National Energy Administration: Eskilstuna, Sweden, 2000. [Google Scholar]
- Svantesson, T.; Petersson, T.; Jedfelt, D. Evaluation of Trial Roll Pelleting Method; Technical Report for Automated Manufacture of Fertilizing Agglomerates from Burnt Wood Ash; University of Kalmar: Nybro, Sweden, 2004. [Google Scholar]
- Sarenbo, S.; Melbo, P.; Stalnacke, O.; Claesson, T. Reactivity and Leaching of wood ash pellets dehydrated by hot air and flue gas. Open Waste Manag. J. 2009, 2, 47–54. [Google Scholar] [CrossRef]
- Jianguo, J.; Maozhe, C.; Yan, Z.; Xin, X. Pb stabilization in fresh fly ash from municipal solid waste incinerator using accelerated carbonation technology. J. Hazard. Mater. 2009, 161, 1046–1051. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Hem, P.; Shao, L.; Lee, D. Temporary stabilization of air pollution control residues using carbonation. Waste Manag. 2008, 28, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Wu, C.; Yan, Y. The characreristics of inorganic elements in ashes from a 1 MW CFB biomass gasification power generation pplant. Fuel Process. Technol. 2007, 88, 149–156. [Google Scholar] [CrossRef]
- Obernberger, I.; Biedermann, F.; Widmann, W.; Riedl, R. Concentrations of inorganic elements in biomass fuels and recovery in the different ash fractions. Biomass Bioenergy 1997, 12, 211–224. [Google Scholar] [CrossRef]
- Ohman, M.; Boman, C.; Nordin, A.; Bostrom, D. Slagging tendencies of wood pellet ash during combustion in resendtial pellet burners. Biomass Bioenergy 2004, 27, 585–596. [Google Scholar] [CrossRef]
- Ninomiya, Y.; Sato, A. Ash melting behaviour under coal gasification conditions. Energy Convers. Manag. 1997, 38, 1405–1412. [Google Scholar] [CrossRef]
- Wilen, C.; Stahlberg, P.; Sipila, K.; Ahokas, J. Pelletization and combustion of straw. Energy Biomass Waste 1987, 10, 469–484. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
James, A.K.; Thring, R.W.; Helle, S.; Ghuman, H.S. Ash Management Review—Applications of Biomass Bottom Ash. Energies 2012, 5, 3856-3873. https://doi.org/10.3390/en5103856
James AK, Thring RW, Helle S, Ghuman HS. Ash Management Review—Applications of Biomass Bottom Ash. Energies. 2012; 5(10):3856-3873. https://doi.org/10.3390/en5103856
Chicago/Turabian StyleJames, Adrian K., Ronald W. Thring, Steve Helle, and Harpuneet S. Ghuman. 2012. "Ash Management Review—Applications of Biomass Bottom Ash" Energies 5, no. 10: 3856-3873. https://doi.org/10.3390/en5103856
APA StyleJames, A. K., Thring, R. W., Helle, S., & Ghuman, H. S. (2012). Ash Management Review—Applications of Biomass Bottom Ash. Energies, 5(10), 3856-3873. https://doi.org/10.3390/en5103856