Utilization of Natural Farm Resources for Promoting High Energy Efficiency in Low-Input Organic Farming
Abstract
:1. Introduction
2. Concepts in Organic Farming
Organic | Integrated | Conventional | Reference | |
---|---|---|---|---|
Sugar beet | - | 26.3 | 33.8 | [17] |
Durum wheat | - | 16.9 | 27.1 | [17] |
Sorghum | - | 16.0 | 22.9 | [17] |
Sunflower | - | 14.8 | 23.0 | [17] |
Barley | 9.0 | - | 13.8 | [18] |
Grain crops | 4.8 | 5.2 | 7.1 | [19] |
Spring barley | 12.6 | - | 16.6 | [20] |
Pea | 7.4 | - | 10.4 | [20] |
Winter wheat | 9.2 | - | 20.3 | [20] |
Various crops | 8.1 | 12.4 | - | [21] |
Wheat-potato-clover | 13.3 | - | 24.1 | [22] |
Raisin | 22.2 | - | 28.9 | [23] |
Soybean | 7.7 | 13.6 | - | [24] |
Maize | 25.9 | 46.9 | - | [24] |
wheat | 11.4 | 28.0 | - | [24] |
Soybean | 9.6 | - | 8.8 | [1] |
Grain crops | 24.2 | - | 68.4 | [25] |
Crop | Country | Duration (years) | Energy Efficiency, OF | Energy Efficiency, IF | Energy Efficiency, CF | Reference |
---|---|---|---|---|---|---|
Apricot | Turkey | 3 | 2.2 | - | 1.5 | [23] |
Sugar beet | Italy | 12 | - | 2.9 | 2.6 | [17] |
Durum wheat I | Italy | 12 | - | 7.5 | 5.1 | [17] |
Durum wheat II | Italy | 12 | - | 6.9 | 4.7 | [17] |
Sorghum | Italy | 12 | - | 14.1 | 10.1 | [17] |
Sun flower | Italy | 12 | - | 17.6 | 11.4 | [17] |
Winter rye | Germany | 5 | 34.8 | 23.7 | 20.9 | [21] |
Winter rye | Germany | 5 | 44.1 | 22.7 | - | [21] |
Corn | US | 22 | 7.7 | - | 5.1 | [1] |
Soybean | US | 22 | 3.8 | - | 4.6 | [1] |
Spring barley | Slovakia | 11 | 10.9 | - | 10.0 | [20] |
Pea | Slovakia | 11 | 12.8 | - | 9.4 | [20] |
Winter wheat | Slovakia | 11 | 16.4 | - | 8.2 | [20] |
Rice | Philippines | >3 | 12.7 | 7.0 | 4.7 | [32] |
Grain crops | US | 17 | 11 | 13 | 10 | [19] |
3. Microorganisms Stimulating Plant Nutrient Uptake
4. Animal Waste—A Farm Resource
5. Green Manure and Cover Crops—Recycling of Plant Material
6. Conclusions and Proposals
References
- Pimentel, D.; Hepperly, P.; Hanson, J.; Seidel, R.; Douds, D. Environmental, energetic, and economic comparisons of organic and conventional farming systems. Bioscience 2005, 55, 573–582. [Google Scholar] [CrossRef]
- Troeh, F.R.; Hobbs, J.A.; Donahue, R.L. Soil and Water Conservation; Prentice Hall: Upper Saddle, NJ, USA, 1999. [Google Scholar]
- Berg, G. Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 2009, 84, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D. The greening of the green revolution. Nature 1998, 396, 211–212. [Google Scholar] [CrossRef]
- Gyaneshwar, P.; Kumar, G.N.; Parekh, L.J.; Poole, P.S. Role of soil microorganisms in improving P nutrition of plants. Plant Soil 2002, 245, 83–93. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Aber, J.D.; Howarth, R.W.; Likens, G.E.; Matson, P.A.; Schindler, D.W.; Schlesinger, W.H.; Tilman, D.G. Human alteration of the global nitrogen cycle: Sources and consequences. Ecol. Appl. 1997, 7, 737–750. [Google Scholar]
- Rodriguez, H.; Fraga, R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 1999, 17, 319–339. [Google Scholar] [CrossRef] [PubMed]
- Sharpley, A.N.; Weld, J.L.; Beegle, D.B.; Kleinman, P.J.A.; Gburek, W.J.; Moore, P.A., Jr.; Mullins, G. Development of phosphorus indices for nutrient management planning strategies in the United States. J. Soil Water Conserv. 2003, 58, 137–152. [Google Scholar]
- Barlog, P.; Grzebisz, W. Effect of timing and nitrogen fertilizer application on winter oilseed rape (Brassica napus L.). II. Nitrogen uptake dynamics and fertilizer efficiency. J. Agron. Crop Sci. 2004, 190, 314–323. [Google Scholar] [CrossRef]
- Eurostat Press Office. Organic Area up by 21% in the EU between 2005 and 2008. Available online: http://epp.eurostat.ec.europa.eu/cache/ITY_PUBLIC/5-01032010-BP/EN/5-01032010-BP-EN.PDF (accessed on 18 December 2010).
- Arthurson, V. Closing the global energy and nutrient cycles through application of biogas residue to agricultural land—Potential benefits and drawback. Energies 2009, 2, 226–242. [Google Scholar] [CrossRef]
- Luttikholt, L.W.M. Principles of organic agriculture as formulated by the international federation of organic agriculture movements. NJAS–Wagen. J. Life Sci. 2007, 54, 347–360. [Google Scholar] [CrossRef]
- Woods, J.; Williams, A.; Hughes, J.K.; Black, M.; Murphy, R. Energy and the food system. Phil. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 2991–3006. [Google Scholar] [CrossRef] [Green Version]
- Oleskowicz-Popiel, P. Biogas and bioethanol in organic farming. Ph.D. Thesis, Information Service Department, Technical University of Denmark, Lyngby, Denmark, 2010. [Google Scholar]
- Fredriksson, H.; Baky, A.; Bernesson, S.; Nordberg, Å.; Norén, O.; Hansson, P.A. Use of on-farm produced biofuels on organic farms—Evaluation of energy balances and environmental loads for three possible fuels. Agric. Syst. 2006, 89, 184–203. [Google Scholar] [CrossRef]
- Halberg, N.; Dalgaard, R.; Olesen, J.E.; Dalgaard, T. Energy self-reliance, net-energy production and GHG emissions in Danish organic cash crop farms. Renew. Agric. Food Syst. 2008, 23, 30–37. [Google Scholar] [CrossRef]
- Nassi O Di Nasso, N.; Bosco, S.; Di Bene, C.; Coli, A.; Mazzoncini, M.; Bonari, E. Energy efficiency in long-term Mediterranean cropping systems with different management intensities. Energy 2011, 36, 1924–1930. [Google Scholar] [CrossRef]
- Jørgensen, U.; Dalgaard, T.; Kristensen, E.S. Biomass energy in organic farming—the potential role of short rotation coppice. Biomass Bioenerg. 2005, 28, 237–248. [Google Scholar] [CrossRef]
- Gelfand, I.; Snapp, S.S.; Robertson, G.P. Energy efficiency of conventional, organic, and alternative cropping systems for food and fuel at a site in the U.S. Midwest. Environ. Sci. Technol. 2010, 44, 4006–4011. [Google Scholar] [CrossRef] [PubMed]
- Klimeková, M.; Lehocká, Z. Comparison of organic and conventional farming system in term of energy efficiency. 2007. Available online: http://orgprints.org/view/projects/wissenschaftstagung-2007.html (accessed on 9 March 2011).
- Deike, S.; Pallut, B.; Christen, O. Investigations on the energy efficiency of organic and integrated farming with specific emphasis on pesticide use intensity. Eur. J. Agron. 2008, 28, 461–470. [Google Scholar] [CrossRef]
- Mäder, P.; Fliessbach, A.; Dubois, D.; Gunst, L.; Fried, P.; Niggli, U. Soil fertility and biodiversity in organic farming. Science 2002, 296, 1694–1697. [Google Scholar] [CrossRef] [PubMed]
- Gündogmus, E.; Bayramoglu, Z. Energy input use on organic farming: A comparative analysis on organic versus conventional farms in Turkey. J. Agron. 2006, 5, 16–22. [Google Scholar] [CrossRef]
- Sartori, L.; Basso, B.; Bertocco, M.; Oliviero, G. Energy use and economic evaluation of a three year crop rotation for conservation and organic farming in NE Italy. Biosyst. Eng. 2005, 91, 245–256. [Google Scholar] [CrossRef]
- Hoeppner, J.W.; Entz, M.H.; McConkey, B.G.; Zentner, R.P.; Nagy, C.N. Energy use and efficiency in two Canadian organic and conventional crop production systems. Renew. Agric. Food Syst. 2005, 21, 60–67. [Google Scholar] [CrossRef]
- Kirchmann, H.; Kätterer, T.; Bergström, L. Nutrient Supply in Organic Agriculture—Plant Availability, Sources and Recycling. In Organic Crop Production—Ambitions and Limitations; Kirchmann, H., Bergström, L., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 89–116. [Google Scholar]
- Pimentel, D. Impacts of Organic Farming on the Efficiency of Energy Use in Agriculture. An Organic Center State of Science Review; The Organic Center: Boulder, CO, USA, 2006. [Google Scholar]
- Oenema, O. Governmental policies and measures regulating nitrogen and phosphorus from animal manure in European agriculture. J. Anim. Sci. 2004, 82, 196–206. [Google Scholar]
- Gosling, P.; Hodge, A.; Goodlass, G.; Bending, G.D. Arbuscular mycorrhizal fungi and organic farming. Agric. Ecosyst. Environ. 2006, 113, 17–35. [Google Scholar] [CrossRef]
- Adesemoye, A.O.; Kloepper, J.W. Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl. Microbiol. Biotechnol. 2009, 85, 1–12. [Google Scholar] [CrossRef]
- Stolze, M.; Piorr, A.; Häring, A.; Dabbert, S. The Environmental Impacts of Organic Farming in Europe. In Organic Farming in Europe: Economics and Policy; Dabbert, S., Lampkin, N., Michelsen, J., Nieberg, H., Zanoli, R., Häring, A., Eds.; University of Hohemheim: Stuttgart, Germany, 2000; Volume 6. [Google Scholar]
- Mendoza, T.C. Comparative productivity, profitability and energy use in organic, LEISA and conventional rice production in the Philippines. Livest. Res. Rural Dev. 2002, 14. Available online: http://www.lrrd.org/lrrd14/6/mend146.htm (accessed on 9 March 2011). [Google Scholar]
- Artursson, V.; Finlay, R.D.; Jansson, J.K. Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ. Microbiol. 2006, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kucey, R.M.N.; Janzen, H.H.; Leggett, M.E. Microbiologically Mediated Increases in Plant-Available Phosphorus. In Advances in Agronomy; Brady, N.C., Ed.; Academic Press: New York, NY, USA, 1989; pp. 199–228. [Google Scholar]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis; Academic Press: San Diego, CA, USA, 1997. [Google Scholar]
- Lindermann, R.G. Mycorrhizal interactions with the rhizosphere microflora: The mycorrhizosphere effect. Phytopathology 1988, 78, 366–371. [Google Scholar]
- Azcón, R. Germination and hyphal growth of Glomus mosseae in vitro: Effects of rhizosphere bacteria and cell-free culture media. Soil Biol. Biochem. 1987, 19, 417–419. [Google Scholar] [CrossRef]
- Kim, K.Y.; Jordan, D.; McDonald, G.A. Effect of phosphate-solubilising bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol. Fertil. Soils 1998, 26, 79–87. [Google Scholar] [CrossRef]
- Bianciotto, V.; Bonfante, P. Arbuscular mycorrhizal fungi: A specialized niche for rhizospheric and endocellular bacteria. Anton. Leeuwenhoek 2002, 81, 365–371. [Google Scholar] [CrossRef]
- Morrissey, J.P.; Dow, M.; Mark, G.L.; O’Gara, F. Are microbes at the root of a solution to world food production? Rational exploitation of interactions between microbes and plants can help to transfrom agriculture. EMBO Rep. 2004, 5, 922–926. [Google Scholar] [CrossRef] [PubMed]
- Barea, J.M.; Azcón, R.; Azcón-Aguilar, C. Mycorrhizosphere interactions to improve plant fitness and soil quality. Anton. Leeuwenhoek 2002, 81, 343–351. [Google Scholar] [CrossRef]
- Fitter, A.H.; Garbaye, J. Interactions between mycorrhizal fungi and other soil organisms. Plant Soil 1994, 159, 123–132. [Google Scholar]
- Kucey, R.M.N.; Paul, E.A. Carbon flow, photosynthesis, and N2 fixation in mycorrhizal and nodulated faba beans (Vicia faba L.). Soil Biol. Biochem. 1982, 14, 407–412. [Google Scholar] [CrossRef]
- Hodge, A.; Fitter, A.H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc. Nat. Acad. Sci. USA 2010, 107, 13754–13759. [Google Scholar] [CrossRef] [PubMed]
- Boehm, M.M.; Anderson, D.W. A landscape-scale study of soil quality in three prairie farming systems. Soil Sci. Soc. Am. J. 1997, 61, 1147–1159. [Google Scholar] [CrossRef]
- Withers, P.J.A.; Edwards, A.C.; Foy, R.H. Phosphorus cycling in UK agriculture and implications for phosphorus loss from soil. Soil Use Manag. 2001, 17, 139–149. [Google Scholar] [CrossRef]
- DeClerck, F.; Singer, M.J.; Lindert, P. A 60-year history of California soil quality using paired samples. Geoderma 2003, 114, 215–230. [Google Scholar] [CrossRef]
- Kogelmann, W.J.; Lin, H.S.; Bryant, R.B.; Beegle, D.B.; Wolf, A.M.; Petersen, G.W. A statewide assessment of the impacts of phosphorus-index implementation in Pennsylvania. J. Soil Water Conser. 2004, 59, 9–18. [Google Scholar]
- Miller, R.L.; Jackson, L.E. Survey of vesicular-arbuscular mycorrhizae in lettuce production in relation to management and soil factors. J. Agric. Sci. 1998, 130, 173–182. [Google Scholar] [CrossRef]
- Liu, A.; Hamel, C.; Hamilton, R.I.; Ma, B.L.; Smith, D.L. Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza 2000, 9, 331–336. [Google Scholar] [CrossRef]
- Burrows, R.L.; Pfleger, F.L. Arbuscular mycorrhizal fungi respond to increasing plant diversity. Can. J. Bot. 2002, 80, 120–130. [Google Scholar] [CrossRef]
- Treseder, K.K.; Allen, M.F. Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi, a model and field test. New Phytol. 2002, 155, 507–515. [Google Scholar] [CrossRef]
- Ryan, M.H.; Ash, J. Effects of phosphorus and nitrogen on growth of pasture plants and VAM fungi in SE Australian soils with contrasting fertiliser histories (conventional and biodynamic). Agric. Ecosyst. Environ. 1999, 73, 51–62. [Google Scholar] [CrossRef]
- Jumpponen, A.; Trowbridge, J.; Mandyam, K.; Johnson, L. Nitrogen enrichment causes minimal changes in arbuscular mycorrhizal colonisation but shifts community composition—evidence from rDNA data. Biol. Fertil. Soils 2005, 41, 217–224. [Google Scholar] [CrossRef]
- Harinikumar, K.M.; Bagyaraj, D.J. Effect of cropping sequence, fertilizers and farmyard manure on vesicular arbuscular mycorrhizal fungi in different crops over three consecutive seasons. Biol. Fertil. Soils 1989, 7, 173–175. [Google Scholar] [CrossRef]
- Ryan, M.H.; Chilvers, G.A.; Dumaresq, D.C. Colonisation of wheat by VA-mycorrhizal fungi was found to be higher on a farm managed in an organic manner than on a conventional neighbour. Plant Soil 1994, 160, 33–40. [Google Scholar] [CrossRef]
- Baby, U.I.; Manibhushanrao, K. Influence of organic amendments on arbuscular mycorrhizal fungi in relation to rice sheath blight disease. Mycorrhiza 1996, 6, 201–206. [Google Scholar] [CrossRef]
- Dann, P.R.; Derrick, J.W.; Dumaresq, D.C.; Ryan, M.H. The response of organic and conventionally grown wheat to superphosphate and reactive phosphate rock. Aust. J. Exp. Agric. 1996, 36, 71–78. [Google Scholar] [CrossRef]
- Douds, D.D.; Galvez, L.; Franke-Snyder, M.; Reider, C.; Drinkwater, L.E. Effect of compost addition and crop rotation point upon VAM fungi. Agric. Ecosyst. Environ. 1997, 65, 257–266. [Google Scholar] [CrossRef]
- Kabir, Z.; O’Halloran, I.P.; Fyles, J.W.; Hamel, C. Dynamics of the mycorrhizal symbiosis of corn (Zea mays L.), effects of host physiology, tillage practice and fertilization on spatial distribution of extra-radical mycorrhizal hyphae in the field. Agric. Ecosyst. Environ. 1998, 68, 151–163. [Google Scholar] [CrossRef]
- Joner, E.J. The effect of long-term fertilization with organic or inorganic fertilizers on mycorrhiza-mediated phosphorus uptake in subterranean clover. Biol. Fertil. Soils 2000, 32, 435–440. [Google Scholar] [CrossRef]
- Alloush, G.A.; Clark, R.B. Maize response to phosphate rock and arbuscular mycorrhizal fungi in acidic soil. Commun. Soil Sci. Plant Anal. 2001, 32, 231–254. [Google Scholar] [CrossRef]
- Pimentel, D.; Harvey, D.; Resosudarmo, P.; Sinclair, K.; Kurz, D.; McNair, M.; Crist, S.; Shpritz, L.; Fitton, L.; Saffouri, R.; Blair, R. Environmental and economic costs of soil erosion and conservation benefits. Science 1995, 267, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
- Fließbach, A.; Oberholzer, H.R.; Gunst, L.; Mäder, P. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric. Ecosyst. Environ. 2007, 118, 273–284. [Google Scholar] [CrossRef]
- Risse, L.M.; Cabrera, M.L.; Franzluebbers, A.J.; Gaskin, J.W.; Gilley, J.E.; Killorn, R.; Radcliffe, D.E.; Tollner, W.E.; Zhang, H. Land Application of Manure for Beneficial Reuse. In Animal Agriculture and the Environment: National Center for Manure and Animal Waste Management White Papers; Rice, J.M., Caldwell, D.F., Humenik, F.J., Eds.; ASABE: St Joseph, MI, USA, 2006; pp. 283–316. [Google Scholar]
- Smith, D.R.; Owens, P.R.; Leytem, A.B.; Warnemuende, E.A. Nutrient losses from manure and fertilizer applications as impacted by time to first runoff event. Environ. Pollut. 2007, 147, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Nyord, T.; Søgaard, H.T.; Hansen, M.N.; Jensen, L.S. Injection methods to reduce ammonia emission from volatile liquid fertilisers applied to growing crops. Biosyst. Eng. 2008, 100, 235–244. [Google Scholar] [CrossRef]
- Guan, T.Y.; Holley, R.A. Pathogen survival in swine manure environments and transmission of human enteric illness—A review. J. Environ. Qual. 2003, 32, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, F.A.; Groves, S.J.; Chambers, B.J. Pathogen survival during livestock manure storage and following land application. Bioresour. Technol. 2005, 96, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Kudva, I.T.; Blanch, K.; Hovde, C.J. Analysis of Escherichia coli O157:H7 survival in ovine or bovine manure and manure slurry. Appl. Environ. Microbiol. 1998, 64, 3166–3174. [Google Scholar] [PubMed]
- Semenov, A.V. Ecology and modelling of Escherichia coli O157:H7 and Salmonella enterica serovar typhimurium in cattle manure and soil. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2008. [Google Scholar]
- Jäderlund, L.; Sessitsch, A.; Arthurson, V. Persistence of two Camylobacter jejuni strains in soil and on spinach plants. Appl. Environ. Soil Sci. 2011, in press. [Google Scholar]
- Arthurson, V.; Sessitsch, A.; Jäderlund, L. Persistence and spread of Salmonella enterica serovar Weltevreden in soil and on spinach plants. FEMS Microb. Lett. 2011, 314, 67–74. [Google Scholar] [CrossRef]
- van Elsas, J.D.; Semenov, A.V.; Costa, R.; Trevors, J.T. Survival of Escherichia coli in the environment: fundamental and public health aspects. ISME J. 2011, 5, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Semenov, A.V.; van Bruggen, A.H.C.; van Overbeek, L.; Termorshuizen, A.J.; Semenov, A.V. Influence of temperature fluctuations on Escherichia coli O157:H7 and Salmonella enterica serovar typhimurium in cow manure. FEMS Microb. Ecol. 2007, 60, 419–428. [Google Scholar] [CrossRef]
- Nelson, H. The contamination of organic produce by human pathogens in animal manures. Available online: http://eap.mcgill.ca/SFMC_1.htm (accessed on 18 December 2010).
- Tilman, D. Community invasibility, recruitment limitation, and grassland biodiversity. Ecology 1997, 78, 81–92. [Google Scholar] [CrossRef]
- Girvan, M.S.; Campbell, C.D.; Killham, K.; Prosser, J.I.; Glover, L.A. Bacterial diversity promotes community stability and functional resilience after perturbation. Environ. Microbiol. 2005, 7, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Semenov, A.V.; Franz, E.; van Overbeek, L.; Termorshuizen, A.J.; van Bruggen, A.H.C. Estimating the stability of Escherichia coli O157:H7 survival in manure amended soils with different management histories. Environ. Microbiol. 2008, 10, 1450–1459. [Google Scholar] [CrossRef] [PubMed]
- van der Putten, W.H.; Klironomos, J.N.; Wardle, D.A. Microbial ecology of biological invasions. ISME J. 2007, 1, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Lindström, K.; Murwira, M.; Willems, A.; Altier, N. The biodiversity of beneficial microbe-host mutualism: The case of rhizobia. Res. Microbiol. 2010, 161, 453–463. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, P. Overview of Cover Crops and Green Manures. Appropriate Technology Transfer for Rural Areas (ATTRA); National Center for Appropriate Technology (NCAT): Fayetteville, NC, USA, 2003; Available online: http://attra.ncat.org/attra-pub/PDF/covercrop.pdf (accessed on 12 December 2010).
- Ding, G.; Liu, X.; Herbert, S.; Novak, J.; Amarasiriwardena, D.; Xing, B. Effect of cover crop management on soil organic matter. Geoderma 2006, 130, 229–239. [Google Scholar] [CrossRef]
- Känkenen, H.; Eriksson, C. Effects of undersown crops on soil mineral N and grain yield of spring barley. Eur. J. Agron. 2007, 27, 25–34. [Google Scholar] [CrossRef]
- Kramberger, B.; Gselman, A.; Janzekovic, M.; Kaligaric, M.; Bracko, B. Effects of cover crops on soil mineral nitrogen and on the yield and nitrogen content of maize. Eur. J. Agron. 2009, 31, 103–109. [Google Scholar] [CrossRef]
- Steenwerth, K.; Belina, K.M. Cover crops enhance soil organic matter, carbon dynamics and microbiological function in an vineyard agroecosystem. Appl. Soil Ecol. 2009, 40, 359–369. [Google Scholar] [CrossRef]
- Cherr, C.M.; Scholberg, J.M.S.; McSorley, R. Green manure approaches to crop production: A synthesis. Agron. J. 2006, 98, 302–319. [Google Scholar] [CrossRef]
- Hooker, K.V.; Coxon, C.E.; Hackett, R.; Kirwan, L.E.; O’Keeffe, E.; Richards, K.G. Evaluation of cover crop and reduced cultivation for reducing nitrate leaching in Ireland. J. Environ. Qual. 2008, 37, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Tonitto, C.; David, M.B.; Drinkwater, L.E. Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: A meta-analysis of crop yield and N-dynamics. Agric. Ecosyst. Environ. 2006, 112, 58–72. [Google Scholar] [CrossRef]
- Kallenbach, C.M.; Rolston, D.E.; Horwath, W.R. Cover cropping affects soil N2O and CO2 emissions differently depending on type of irrigation. Agric. Ecosyst. Environ. 2010, 137, 251–260. [Google Scholar] [CrossRef]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Arthurson, V.; Jäderlund, L. Utilization of Natural Farm Resources for Promoting High Energy Efficiency in Low-Input Organic Farming. Energies 2011, 4, 804-817. https://doi.org/10.3390/en4050804
Arthurson V, Jäderlund L. Utilization of Natural Farm Resources for Promoting High Energy Efficiency in Low-Input Organic Farming. Energies. 2011; 4(5):804-817. https://doi.org/10.3390/en4050804
Chicago/Turabian StyleArthurson, Veronica, and Lotta Jäderlund. 2011. "Utilization of Natural Farm Resources for Promoting High Energy Efficiency in Low-Input Organic Farming" Energies 4, no. 5: 804-817. https://doi.org/10.3390/en4050804
APA StyleArthurson, V., & Jäderlund, L. (2011). Utilization of Natural Farm Resources for Promoting High Energy Efficiency in Low-Input Organic Farming. Energies, 4(5), 804-817. https://doi.org/10.3390/en4050804