Innovative Developments and Future Prospects of Geo-Energy Technology in China
1. Introduction
2. Special Issue Content
3. Closing Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, X.; Zhu, J.; Niu, C.; Li, J.; Hu, X.; Jin, X. Heat extraction and power production forecast of a prospective Enhanced Geothermal System site in Songliao Basin, China. Energy 2014, 75, 360–370. [Google Scholar] [CrossRef]
- Wang, Z.; Ning, Z.; Guo, W.; Zhan, J.; Zhang, Y. Study of fracture monitoring and heat extraction evaluation in geothermal reservoir modified by abandoned well pattern: Numerical models and case studies. Energy 2024, 296, 131144. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, Z.; Li, G.; Wu, X.; Wang, T.; Zhou, X. Enhancing reservoir stimulation and heat extraction performance for fractured geothermal reservoirs: Utilization of novel multilateral wells. Energy 2024, 291, 130410. [Google Scholar] [CrossRef]
- Duan, H.Y.; Ma, D.; Zou, L.C.; Xie, S.J.; Liu, Y. Co-exploitation of coal and geothermal energy through water-conducting structures: Improving extraction efficiency of geothermal well. Renew. Energy 2024, 228, 120666. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, G.; Luo, N.; Gu, J.; Liu, H.; Ye, D. A new fractal model for quantitatively investigating the contribution of microstructural evolution to geothermal extraction. Renew. Energy 2023, 211, 42–54. [Google Scholar] [CrossRef]
- Lu, D.; Wu, W. Controlling Borehole Geometry as a Feasible Strategy for Optimization of Heat Extraction in Geothermal Systems. Rock Mech. Rock Eng. 2024, 57, 7461–7472. [Google Scholar] [CrossRef]
- Huang, W.; Cen, J.; Chen, J.; Cao, W.; Li, Z.; Li, F.; Jiang, F. Heat extraction from hot dry rock by super-long gravity heat pipe: A field test. Energy 2022, 247, 123492. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, Y.; Cheng, Y.; Yu, Z.; Hu, Z.; Huang, Y. Heat extraction performance of fractured geothermal reservoirs considering aperture variability. Energy 2023, 269, 126806. [Google Scholar] [CrossRef]
- Gong, F.; Guo, T.; Sun, W.; Li, Z.; Yang, B.; Chen, Y.; Qu, Z. Evaluation of geothermal energy extraction in Enhanced Geothermal System (EGS) with multiple fracturing horizontal wells (MFHW). Renew. Energy 2020, 151, 1339–1351. [Google Scholar] [CrossRef]
- Kuang, L.C.; Liu, H.; Ren, Y.L.; Luo, K.; Shi, M.Y.; Su, J.; Li, X. Application and development trend of artificial intelligence in petroleum exploration and development. Pet. Explor. Dev. 2021, 48, 1–14. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, G.; Song, L.; Huang, L.; Wang, S.; Zhang, Y.; Huang, Y.; Dai, Q.; Fan, X. Identification of fluid types and their implications for petroleum exploration in the shale oil reservoir: A case study of the Fengcheng Formation in the Mahu Sag, Junggar Basin, Northwest China. Mar. Pet. Geol. 2023, 147, 105996. [Google Scholar] [CrossRef]
- Guo, T.L.; Xiong, L.; Ye, S.J.; Dong, X.X.; Wei, L.M.; Yang, Y.T. Theory and practice of unconventional gas exploration in carrier beds: Insight from the breakthrough of new type of shale gas and tight gas in Sichuan Basin, SW China. Pet. Explor. Dev. 2023, 50, 27–42. [Google Scholar] [CrossRef]
- Wang, W.; Pang, X.; Chen, Z.; Chen, D.; Yu, R.; Luo, B.; Zheng, T.; Li, H. Statistical evaluation and calibration of model predictions of the oil and gas field distributions in superimposed basins: A case study of the Cambrian Longwangmiao Formation in the Sichuan Basin, China. Mar. Pet. Geol. 2019, 106, 42–61. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, G.; Chi, L.; Wang, P.; Zhou, L.; Li, J.; Wu, Z. Discovery of the high-yield well GT1 in the deep strata of the southern margin of the Junggar Basin, China: Implications for liquid petroleum potential in deep assemblage. J. Pet. Sci. Eng. 2020, 191, 107178. [Google Scholar] [CrossRef]
- Li, Y.; Chen, X.; Shao, Y. 3D natural fracture model of shale reservoir based on petrophysical characterization. J. Struct. Geol. 2023, 166, 104763. [Google Scholar] [CrossRef]
- Mendez, J.N.; Jin, Q.; González, M.; Zhang, X.; Lobo, C.; Boateng, C.D.; Zambrano, M. Fracture characterization and modeling of karsted carbonate reservoirs: A case study in Tahe oilfield, Tarim Basin (western China). Mar. Pet. Geol. 2020, 112, 104104. [Google Scholar] [CrossRef]
- Li, K.; Huang, X.; Wo, Y.; Cao, W.; Hu, Y.; Tang, J.; Xiao, W. A characterization method for cavity Karst reservoir using local full-waveform inversion in frequency domain. IEEE Geosci. Remote. Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Jiang, H.; Li, T.; Liu, S.; Tang, Y.; Yuan, S. Quantitative characterization of salting out during development of deep high temperature gas reservoirs. J. Pet. Sci. Eng. 2022, 211, 110125. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, Z.; Wang, J.; Li, Z. Subtle reservoirs and implications for hydrocarbon exploration in terrestrial lacustrine fan-delta deposits: Insights from the Triassic Baikouquan Formation, Mahu Sag, Junggar Basin, western China. Mar. Pet. Geol. 2022, 142, 105730. [Google Scholar] [CrossRef]
- Zhong, Z.; Sun, A.Y.; Wang, Y.; Ren, B. Predicting field production rates for waterflooding using a machine learning-based proxy model. J. Pet. Sci. Eng. 2020, 194, 107574. [Google Scholar] [CrossRef]
- Kuang, Y.; Zhang, L.; Zheng, Y. Enhanced CO2 sequestration based on hydrate technology with pressure oscillation in porous medium using NMR. Energy 2022, 252, 124082. [Google Scholar] [CrossRef]
- Wu, L.; Hou, Z.M.; Luo, Z.F.; Huang, L.C.; Xiong, Y.; Mehmood, F.; Liu, J.H.; Sun, W.; Xie, Y.C. Efficiency assessment of underground biomethanation with hydrogen and carbon dioxide in depleted gas reservoirs: A biogeochemical simulation. Energy 2023, 283, 128539. [Google Scholar] [CrossRef]
- Song, H.; Zhong, Z.; Lin, B. Chemical dissolution of minerals in anthracite after supercritical carbon dioxide immersion: Considering mechanical damage and enhanced porosity. Energy 2023, 283, 129063. [Google Scholar] [CrossRef]
- Tian, S.; Zhou, J.; Xian, X.; Gan, Q.; Zhang, C.; Dong, Z.; Kuang, N. The impact of supercritical CO2 exposure time on the effective stress law for permeability in shale. Energy 2023, 284, 129334. [Google Scholar] [CrossRef]
- Cao, F.; Eskin, D.; Leonenko, Y. Modeling of carbon dioxide dissolution in an injection well for geologic sequestration in aquifers. Energy 2021, 221, 119780. [Google Scholar] [CrossRef]
- Lin, C.; Jia, X.; Deng, S.; Mao, J.; Chen, X.; He, J.; Li, X. The roles of micro pores and minerals in shale during hydraulic fracturing. Rock Mech. Rock Eng. 2024, 57, 10177–10186. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, Q.; Li, Y.; Pan, Z.; Liu, B. Hydraulic fracture vertical propagation mechanism in interlayered brittle shale formations: An experimental investigation. Rock Mech. Rock Eng. 2023, 56, 199–220. [Google Scholar] [CrossRef]
- Wei, C.; Li, S.; Yu, L.; Zhang, B.; Liu, R.; Pan, D.; Zhang, F. Study on mechanism of strength deterioration of rock-like specimen and fracture damage deterioration model under pulse hydraulic fracturing. Rock Mech. Rock Eng. 2023, 56, 4959–4973. [Google Scholar] [CrossRef]
- Guo, P.; Li, X.; Li, S.; He, J.; Mao, T.; Hu, Y.; Zheng, B. Experimental investigation of simultaneous and asynchronous hydraulic fracture growth from multiple perforations in shale considering stress anisotropy. Rock Mech. Rock Eng. 2023, 56, 8209–8220. [Google Scholar] [CrossRef]
- Ma, W.B.; Zou, W.H.; Zhang, J.L.; Li, G. Prediction of Shear Strength in Anisotropic Structural Planes Considering Size Effects. Designs 2025, 9, 17. [Google Scholar] [CrossRef]
- Zou, X.W.; Zhou, T.; Li, G.; Hu, Y.; Deng, B.; Yang, T. Intelligent Inversion Analysis of Surrounding Rock Parameters and Deformation Characteristics of a Water Diversion Surge Shaft. Designs 2024, 8, 116. [Google Scholar] [CrossRef]
- Zhu, C.; Yang, S.Q.; Pu, Y.Y.; Sun, L.J.; Wang, M.; Du, K. Advanced Progress of the Geo-Energy Technology in China. Energies 2023, 16, 6812. [Google Scholar] [CrossRef]
- Wang, M.; Wang, M.; Zhao, X.; Li, J.; Zhang, S.; Tian, M. Comparison of Methods for Determining the Oil Content in Medium-Mature Shale—A Case Study from the Fourth Member of the Shahejie Formation in the Dongying Depression. Energies 2025, 18, 708. [Google Scholar] [CrossRef]
- Huang, X.; Shi, C.; Ruan, H.N.; Zhang, Y.P.; Zhao, W. Stable Crack Propagation Model of Rock Based on Crack Strain. Energies 2022, 15, 1885. [Google Scholar] [CrossRef]
- Zeng, H.; He, W.T.; Yang, L.H.; Su, J.Z.; Meng, X.L.; Cen, X.Q.; Guo, W. Evolution of Biomarker Maturity Parameters and Feedback to the Pyrolysis Process for In Situ Conversion of Nongan Oil Shale in Songliao Basin. Energies 2022, 15, 3715. [Google Scholar] [CrossRef]
- Jiao, A.J.; Tian, S.X.; Lin, H.Y. Analysis of Outburst Coal Structure Characteristics in Sanjia Coal Mine Based on FTIR and XRD. Energies 2022, 15, 1956. [Google Scholar] [CrossRef]
- Liu, B.; Chang, S.L.; Zhang, S.; Li, Y.R.; Yang, Z.H.; Liu, Z.L.; Chen, Q. Seismic-Geological Integrated Study on Sedimentary Evolution and Peat Accumulation Regularity of the Shanxi Formation in Xinjing Mining Area, Qinshui Basin. Energies 2022, 15, 1851. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheng, K.; Hu, N.; Zhu, C.; Xu, Z.; Du, K. Innovative Developments and Future Prospects of Geo-Energy Technology in China. Energies 2025, 18, 2360. https://doi.org/10.3390/en18092360
Sheng K, Hu N, Zhu C, Xu Z, Du K. Innovative Developments and Future Prospects of Geo-Energy Technology in China. Energies. 2025; 18(9):2360. https://doi.org/10.3390/en18092360
Chicago/Turabian StyleSheng, Ke, Nanxiang Hu, Chun Zhu, Zhouchao Xu, and Kun Du. 2025. "Innovative Developments and Future Prospects of Geo-Energy Technology in China" Energies 18, no. 9: 2360. https://doi.org/10.3390/en18092360
APA StyleSheng, K., Hu, N., Zhu, C., Xu, Z., & Du, K. (2025). Innovative Developments and Future Prospects of Geo-Energy Technology in China. Energies, 18(9), 2360. https://doi.org/10.3390/en18092360