New Advances in Low-Energy Processes for Geo-Energy Development
Abstract
:1. Introduction
2. Review of the Research Presented in This Special Issue
2.1. Unconventional Hydrocarbon Development Using Low-Energy Technologies
2.2. Geothermal Resource Exploitation Using Low-Energy Technologies
2.3. Intelligent Technologies and Numerical Simulation Innovations for Low-Energy Oil and Gas Development
3. Conclusions
Acknowledgments
Conflicts of Interest
References
- Wan, Y.; Yuan, Y.; Zhou, C.; Liu, L. Multiphysics coupling in exploitation and utilization of geo-energy: State-of-the-art and future perspectives. Adv. Geo-Energy Res. 2023, 10, 7–13. [Google Scholar]
- Wang, W.; Wang, X.; Chen, Y.; Liu, C.; Zhang, Y. Unconventional resources: Provenance analysis, sediment transport, reservoir evaluation, geo-energy. Front. Earth Sci. 2024, 12, 1530200. [Google Scholar] [CrossRef]
- Wang, J.; Xie, H.-P.; Matthai, S.K.; Hu, J.-J.; Li, C.-B. The role of natural fracture activation in hydraulic fracturing for deep unconventional geo-energy reservoir stimulation. Pet. Sci. 2023, 20, 2141–2164. [Google Scholar] [CrossRef]
- Zhao, M.; Yuan, B.; Liu, Y.; Zhang, W.; Zhang, X.; Guo, W. Dynamic prediction of fracture propagation in horizontal well hydraulic fracturing: A data-driven approach for geo-energy exploitation. Geoenergy Sci. Eng. 2024, 241, 213182. [Google Scholar] [CrossRef]
- Khaleghi, K.; Livescu, S. A review of vertical closed-loop geothermal heating and cooling systems with an Emphasis on the importance of the subsurface. J. Pet. Sci. Eng. 2023, 220, 111137. [Google Scholar] [CrossRef]
- Darko, C.K.; Liu, Y.; Wei, M.; Bai, B.; Schuman, T. Enhancing geothermal efficiency: Experimental evaluation of a high-temperature preformed particle gel for controlling preferential fluid flow. Renew. Energy 2024, 235, 121417. [Google Scholar] [CrossRef]
- Winterfeld, P.; Bai, B.; Wu, Y.-S. Using Preformed Particle Gels to Control Transport in Geothermal Reservoirs: Mathematical Modeling. In Proceedings of the SPE Reservoir Simulation Conference, Galveston, TX, USA, 25–27 March 2025. [Google Scholar] [CrossRef]
- Wang, D.-B.; Qin, H.; Wang, Y.-L.; Hu, J.-Q.; Sun, D.-L.; Yu, B. Experimental study of the temporary plugging capability of diverters to block hydraulic fractures in high-temperature geothermal reservoirs. Pet. Sci. 2023, 20, 3687–3699. [Google Scholar]
- Fassihi, M.R.; Kovscek, A.R. Low-Energy Processes for Unconventional Oil Recovery; Society of Petroleum Engineers: Richardson, TX, USA, 2017. [Google Scholar]
- Xiong, R.; Guo, J.; Kiyingi, W.; Gao, C.; Wang, L.; Luo, J.; Song, H.; Wang, X. Technical transformation of heavy/ultra-heavy oil production in China driven by low carbon goals: A review. J. Clean. Prod. 2024, 458, 142531. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, H.; Li, S.; Yang, E.; Ding, Y.; Bai, Y.; Zhou, Y. Accurate gas extraction (AGE) under the dual-carbon background: Green low-carbon development pathway and prospect. J. Clean. Prod. 2022, 377, 134372. [Google Scholar]
- Zhu, D.-Y.; Fang, X.-Y.; Sun, R.-X.; Xu, Z.-H.; Liu, Y.; Liu, J.-Y. Development of degradable pre-formed particle gel (DPPG) as temporary plugging agent for petroleum drilling and production. Pet. Sci. 2021, 18, 479–494. [Google Scholar] [CrossRef]
- Zhu, D.; Zhao, Q.; Chen, P.; Lu, J.; Yang, Y.; Guo, S.; Zhang, T. Laboratory Evaluation of Antileakage Performance against CO2 of Alkali-Activated Gel-Reinforced Cement for Carbon Capture, Utilization, and Storage. SPE J. 2025, 1–16. [Google Scholar] [CrossRef]
- Zhu, D.; Qin, J.; Gao, Y.; Guo, S.; Bai, L.; Zhao, Y.; Zhao, Q.; Zhang, H. Black Nanosheet-Enhanced Low-Salinity Water System for Improving Oil Recovery in a Low-Permeability Conglomerate Reservoir. Energy Fuels 2023, 37, 11893–11901. [Google Scholar]
- Bai, L.; Shi, C.; Tang, K.; Xie, H.; Yang, S.; Zhu, D. Study on migration and plugging performance of polymer gel in fractured cores using nuclear magnetic resonance technology. Geoenergy Sci. Eng. 2023, 227, 211891. [Google Scholar]
- Shah, M.S.; Shah, S.N. Comparative assessment of mechanical and chemical fluid diversion techniques during hydraulic fracturing in horizontal wells. Pet. Sci. 2023, 20, 3582–3597. [Google Scholar] [CrossRef]
- Seright, R. Potential for polymer flooding reservoirs with viscous oils. SPE Reserv. Eval. Eng. 2010, 13, 730–740. [Google Scholar] [CrossRef]
- Zhu, D.; Bai, B.; Hou, J. Polymer gel systems for water management in high-temperature petroleum reservoirs: A chemical review. Energy Fuels 2017, 31, 13063–13087. [Google Scholar]
- Wang, Y.-Z.; Cao, R.-Y.; Jia, Z.-H.; Wang, B.-Y.; Ma, M.; Cheng, L.-S. A multi-mechanism numerical simulation model for CO2-EOR and storage in fractured shale oil reservoirs. Pet. Sci. 2024, 21, 1814–1828. [Google Scholar] [CrossRef]
- Jiang, G.-C.; Sheng, K.-M.; He, Y.-B.; Yang, L.-L.; Dong, T.-F.; Sun, Z.; Jiang, K.-L. Numerical simulation of the temporal and spatial evolution of sandstone pore type reservoir damage types and severity. Sci. Rep. 2024, 14, 25401. [Google Scholar]
- Cai, J.; Qin, X.; Xia, X.; Jiao, X.; Chen, H.; Wang, H.; Xia, Y. Numerical modeling of multiphase flow in porous media considering micro-and nanoscale effects: A comprehensive review. Gas Sci. Eng. 2024, 131, 205441. [Google Scholar]
- Jiao, Y.; Ji, J.; Yang, Y.; Yin, H. Big data and artificial intelligence-based numerical simulation and optimization of microbial enhanced oil recovery: Model development, algorithm application, and prospects. Adv. Resour. Res. 2025, 5, 551–568. [Google Scholar]
- Lawal, A.; Yang, Y.; He, H.; Baisa, N.L. Machine learning in oil and gas exploration: A review. IEEE Access 2024, 12, 19035–19058. [Google Scholar]
- Favour, D.A. Petroleum Industry Value Chain Optimization: The Inevitability of Artificial Intelligence and Data Science in Midstream and Downstream Development. In Proceedings of the SPE Nigeria Annual International Conference and Exhibition, Lagos, Nigeria, 5–7 August 2024. [Google Scholar] [CrossRef]
- Li, G.; Song, X.; Shi, Y.; Wang, G.; Huang, Z. Current status and construction scheme of smart geothermal field technology. Pet. Explor. Dev. 2024, 51, 1035–1048. [Google Scholar] [CrossRef]
- Xue, L.; Xu, S.; Nie, J.; Qin, J.; Han, J.-X.; Liu, Y.-T.; Liao, Q.-Z. An efficient data-driven global sensitivity analysis method of shale gas production through convolutional neural network. Pet. Sci. 2024, 21, 2475–2484. [Google Scholar] [CrossRef]
- Lobo, F.L.; Wang, H.; Huggins, T.; Rosenblum, J.; Linden, K.G.; Ren, Z.J. Low-energy hydraulic fracturing wastewater treatment via AC powered electrocoagulation with biochar. J. Hazard. Mater. 2016, 309, 180–184. [Google Scholar]
- Hu, Z.; Wang, H. Feasibility study of energy storage using hydraulic fracturing in shale formations. Appl. Energy 2024, 354, 122251. [Google Scholar] [CrossRef]
- Liao, Q.; Wang, B.; Chen, X.; Tan, P. Reservoir stimulation for unconventional oil and gas resources: Recent advances and future perspectives. Adv. Geo-Energy Res. 2024, 13, 7–9. [Google Scholar] [CrossRef]
- Bera, A.; Babadagli, T. Status of electromagnetic heating for enhanced heavy oil/bitumen recovery and future prospects: A review. Appl. Energy 2015, 151, 206–226. [Google Scholar] [CrossRef]
- Sun, C.; Liu, W.; Wang, B.; Ma, T.; Guo, C. Modeling microwave heating for enhanced shale gas recovery: Fully coupled two-phase flows with heat transfer and electromagnetism in deformable reservoirs. Appl. Therm. Eng. 2024, 248, 123190. [Google Scholar]
- Lu, Z.; Wan, Y.; Xu, L.; Fang, D.; Wu, H.; Zhong, J. Nanofluidic Study of Multiscale Phase Transitions and Wax Precipitation in Shale Oil Reservoirs. Energies 2024, 17, 2415. [Google Scholar] [CrossRef]
- Hu, X.; Wang, J.; Zhang, L.; Xiong, H.; Wang, Z.; Duan, H.; Yao, J.; Sun, H.; Zhang, L.; Song, W.; et al. Direct Visualization of Nanoscale Salt Precipitation and Dissolution Dynamics during CO2 Injection. Energies 2022, 15, 9567. [Google Scholar] [CrossRef]
- Jia, P.; Niu, L.; Li, Y.; Feng, H. A Practical Model for Gas–Water Two-Phase Flow and Fracture Parameter Estimation in Shale. Energies 2023, 16, 5140. [Google Scholar] [CrossRef]
- Liu, Y.; Pei, X.; Yang, F.; Zhong, J.; Dai, L.; Wang, C.; Zhou, T.; Li, Y.; Xiao, S. Molecular Simulation Study of Gas–Water Adsorption Behavior and Mobility Evaluation in Ultra-Deep, High-Pressure Fractured Tight Sandstone Reservoirs. Energies 2025, 18, 2175. [Google Scholar] [CrossRef]
- Sáez Blázquez, C.; Martín Nieto, I.; Carrasco, J.; Carrasco, P.; Porras, D.; Maté-González, M.Á.; Farfán Martín, A.; González-Aguilera, D. Applying Deep Electrical-Resistivity Tomography Techniques for the Exploration of Medium- and Low-Geothermal Energy Resources. Energies 2024, 17, 1836. [Google Scholar] [CrossRef]
- Zhu, J.; Cui, Z.; Feng, B.; Ren, H.; Liu, X. Numerical Simulation of Geothermal Reservoir Reconstruction and Heat Extraction System Productivity Evaluation. Energies 2023, 16, 127. [Google Scholar] [CrossRef]
- Feng, B.; Ren, H.; Yang, Y.; Cui, Z.; Zhao, J. Comparative Analysis of Heating Efficiency of a Single-Well Geothermal System in the Cold Region of Northeast China. Energies 2023, 16, 1884. [Google Scholar] [CrossRef]
- Feng, B.; Cui, Z.; Liu, X.; Shangguan, S.; Qi, X.; Li, S. Effects of Water–Rock Interaction on the Permeability of the Near-Well Reservoir in an Enhanced Geothermal System. Energies 2022, 15, 8820. [Google Scholar] [CrossRef]
- Kong, X.; Liu, Y.; Xue, L.; Li, G.; Zhu, D. A Hybrid Oil Production Prediction Model Based on Artificial Intelligence Technology. Energies 2023, 16, 1027. [Google Scholar] [CrossRef]
- Liu, T.; Jiang, L.; Liu, J.; Ni, J.; Liu, X.; Diwu, P. A Novel Workflow for Early Time Transient Pressure Data Interpretation in Tight Oil Reservoirs with Physical Constraints. Energies 2023, 16, 245. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, D. New Advances in Low-Energy Processes for Geo-Energy Development. Energies 2025, 18, 2357. https://doi.org/10.3390/en18092357
Zhu D. New Advances in Low-Energy Processes for Geo-Energy Development. Energies. 2025; 18(9):2357. https://doi.org/10.3390/en18092357
Chicago/Turabian StyleZhu, Daoyi. 2025. "New Advances in Low-Energy Processes for Geo-Energy Development" Energies 18, no. 9: 2357. https://doi.org/10.3390/en18092357
APA StyleZhu, D. (2025). New Advances in Low-Energy Processes for Geo-Energy Development. Energies, 18(9), 2357. https://doi.org/10.3390/en18092357