A Review of Marine Renewable Energy Utilization Technology and Its Integration with Aquaculture
Abstract
:1. Overview of Marine Renewable Energy
2. Existing Technology in Marine Renewable Energy Conversion
2.1. Offshore Wind Energy
2.2. Tidal Energy
2.3. Wave Energy
2.3.1. Oscillating Water Column (OWC) WECs
2.3.2. Oscillating Body (OB) WECs
Duck WEC
Eagle WEC
Oscillating Float Type WEC
Pendulum and Raft Type WECs
2.3.3. Overtopping WEC
Contraction Channel
Overtopping WEC (OWEC)
2.4. Tidal Current Energy
2.4.1. Horizontal Axis Type
2.4.2. Vertical Axis Type
2.5. Temperature-Difference Energy
2.5.1. Open Cycle
2.5.2. Closed Cycle
2.5.3. Hybrid Cycle
2.6. Salinity-Gradient Energy
2.6.1. Pressure Delayed Osmosis (PRO)
2.6.2. Reverse Electrodialysis (RED)
3. Integration of Marine Renewable Energy System with Aquaculture
3.1. Aquaculture Technology
3.1.1. Truss Structure Net Cage
3.1.2. Deep-Sea Aquaculture Ship
3.2. Multi-Energy Complementarity
3.2.1. Wind–Wave Energy Complementary Technology
Independent Complementary Type
Hydraulic Energy Storage Type
Mechanical Coupling Type
3.2.2. Wind–Tidal Current Energy Complementary Technology
3.2.3. Subsubsection
3.3. Integration of Aquaculture with Standalone Energy
3.3.1. Aquaculture–Offshore Wind Energy
3.3.2. Aquaculture–Solar Energy
3.4. Integration of Aquaculture with Multi-Energy
3.4.1. Offshore Wind–Solar–Aquaculture
3.4.2. Wave–Solar–Aquaculture
3.4.3. Offshore Wind –Tidal Current–Aquaculture
3.4.4. Offshore Wind Energy–Temperature-Difference–Aquaculture
3.5. Discussion
3.5.1. Main Research and Application Progress
3.5.2. Future Prospection
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McMorland, J.; Collu, M.; McMillan, D.; Carroll, J.; Coraddu, A. Opportunistic maintenance for offshore wind: A review and proposal of future framework. Renew. Sustain. Energy Rev. 2023, 184, 113571. [Google Scholar] [CrossRef]
- Khojasteh, D.; Shamsipour, A.; Huang, L.; Tavakoli, S.; Haghani, M.; Flocard, F.; Farzadkhoo, M.; Iglesias, G.; Hemer, M.; Lewis, M.; et al. A large-scale review of wave and tidal energy research over the last 20 years. Ocean. Eng. 2023, 282, 114995. [Google Scholar] [CrossRef]
- Neill, S.P.; Angeloudis, A.; Robins, P.E.; Walkington, I.; Ward, S.L.; Masters, I.; Lewis, M.J.; Piano, M.; Avdis, A.; Piggott, M.D.; et al. Tidal range energy resource and optimization—Past perspectives and future challenges. Renew. Energy 2018, 127, 763–778. [Google Scholar] [CrossRef]
- Golbaz, D.; Asadi, R.; Amini, E.; Mehdipour, H.; Nasiri, M.; Etaati, B.; Naeeni, S.T.O.; Neshat, M.; Mirjalili, S.; Gandomi, A.H. Layout and design optimization of ocean wave energy converters: A scoping review of state-of-the-art canonical, hybrid, cooperative, and combinatorial optimization methods. Energy Rep. 2022, 8, 15446–15479. [Google Scholar] [CrossRef]
- Li, H.; Shi, X.; Kong, W.; Kong, L.; Hu, Y.; Wu, X.; Pan, H.; Zhang, Z.; Pan, Y.; Yan, J. Advanced wave energy conversion technologies for sustainable and smart sea: A comprehensive review. Renew. Energy 2025, 238, 121980. [Google Scholar] [CrossRef]
- Li, G.; Zhu, W. Tidal current energy harvesting technologies: A review of current status and life cycle assessment. Renew. Sustain. Energy Rev. 2023, 179, 113269. [Google Scholar] [CrossRef]
- Chen, C. Study on Blade Optimization and Hydrodynamic Performance of Horizontal Axis Marine Current Turbine; Ocean University of China: Qingdao, China, 2012. [Google Scholar]
- Jung, H.; Subban, C.V.; McTigue, J.D.; Martinez, J.J.; Copping, A.E.; Osorio, J.; Liu, J.; Deng, Z.D. Extracting energy from ocean thermal and salinity gradients to power unmanned underwater vehicles: State of the art, current limitations, and future outlook. Renew. Sustain. Energy Rev. 2022, 160, 112283. [Google Scholar] [CrossRef]
- Aresti, L.; Christodoulides, P.; Michailides, C.; Onoufriou, T. Reviewing the energy, environment, and economy prospects of Ocean Thermal Energy Conversion (OTEC) systems. Sustain. Energy Technol. Assess. 2023, 60, 103459. [Google Scholar] [CrossRef]
- Cai, Q.; Li, Z.; Hu, J.; Huang, B.; Pan, Y.; Wu, H.; Ren, Z. Fatigue study of unbonded flexible risers for ocean thermal energy conversion based on the joint distribution of wind, wave, and current. Appl. Ocean. Res. 2025, 154, 104306. [Google Scholar] [CrossRef]
- Wang, P.; Liu, Y.; Li, Y.; Tang, X.; Ren, Q. Power prediction for salinity-gradient osmotic energy conversion based on multiscale and multidimensional convolutional neural network. Energy 2024, 313, 133729. [Google Scholar] [CrossRef]
- Griffin, R.; Buck, B.; Krause, G. Private incentives for the emergence of co-production of offshore wind energy and mussel aquaculture. Aquaculture 2015, 436, 80–89. [Google Scholar] [CrossRef]
- Buck, B.H.; Langan, R. The German Case Study: Pioneer Projects of Aquaculture-Wind Farm Multi-Uses; Springer International Publishing: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Gharechae, A.; Abazari, A.; Soleimani, K. Performance assessment of a combined circular aquaculture cage floater and point absorber wave energy converters. Ocean. Eng. 2024, 300, 117239. [Google Scholar] [CrossRef]
- Yue, W.; Wang, Z.; Ding, W.; Sheng, S.; Zhang, Y.; Huang, Z.; Wang, W. Feasibility of Co-locating wave energy converters with offshore aquaculture: The Pioneering case study of China’s Penghu platform. Ocean. Eng. 2023, 288, 116039. [Google Scholar] [CrossRef]
- Yue, W.; Wang, W.; Sheng, S.; Ye, Y.; Hong, T. Analysis of the wave load and dynamic response of a new semi-submersible wave-energy-powered aquaculture platform. Ocean. Eng. 2022, 248, 110346. [Google Scholar] [CrossRef]
- Chen, M.; Huang, W.; Liu, H.; Hallak, T.S.; Liu, S.; Yang, Y.; Tao, T.; Jiang, Y. A novel SPM wind-wave-aquaculture system: Concept design and fully coupled dynamic analysis. Ocean. Eng. 2025, 315, 119798. [Google Scholar] [CrossRef]
- Liu, H.; Liu, M.; Liang, Z. Investigation of Three-Dimensional Wake Width for Offshore Wind Turbines Under Complex Environmental Conditions by Large Eddy Simulation. J. Offshore Mech. Arct. Eng. 2024, 147, 22001. [Google Scholar] [CrossRef]
- Jiang, Y.; Cheng, Z.; Chen, P.; Liu, L.; Yang, L.; Xiao, L. Effects of Aerodynamic Damping and Gyroscopic Moments on Dynamic Responses of a Semi-Submersible Floating Vertical Axis Wind Turbine: An Experimental Study. J. Offshore Mech. Arct. Eng. 2024, 147, 1–43. [Google Scholar] [CrossRef]
- McKenna, R.; Ostman, V.D.; Leye, P.; Fichtner, W. Key challenges and prospects for large wind turbines. Renew. Sustain. Energy Rev. 2016, 53, 1212–1221. [Google Scholar] [CrossRef]
- Breton, S.-P.; Moe, G. Status, plans and technologies for offshore wind turbines in Europe and North America. Renew. Energy 2009, 34, 646–654. [Google Scholar] [CrossRef]
- Nizamani, Z.; Muhammad, A.K.; Ali, M.O.A.; Wahab, M.A.; Nakayama, A.; Ahmed, M.M. Renewable wind energy resources in offshore low wind speeds regions near the equator: A review. Ocean. Eng. 2024, 311, 118834. [Google Scholar] [CrossRef]
- Gosselin, R.; Dumas, G.; Boudreau, M. Parametric study of H-Darrieus vertical-axis turbines using CFD simulations. J. Renew. Sustain. Energy 2016, 8, 53301. [Google Scholar] [CrossRef]
- Ashwill, T.D.; Sutherland, H.J.; Berg, D.E. A Retrospective of VAWT Technology; Sandia National Laboratories: Albuquerque, NM, USA, 2012. [Google Scholar]
- Jenkins, N. Engineering wind farms. Power Eng. J. 1993, 7, 53–60. [Google Scholar] [CrossRef]
- Kinzel, M.; Mulligan, Q.; Dabiri, J.O. Energy exchange in an array of vertical-axis wind turbines. J. Turbul. 2013, 14, 38–39. [Google Scholar] [CrossRef]
- Burton, T.; Jenkins, N.; Sharpe, D.; Bossanyi, E. Wind Energy Handbook, 2nd ed.; Wiley: New Delhi, India, 2011. [Google Scholar]
- Jamieson, P. Innovation in Wind Turbine Design, 2nd ed.; Wiley John Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Islam, M.R.; Mekhilef, S.; Saidur, R. Progress and recent trends of wind energy technology. Renew. Sustain. Energy Rev. 2013, 21, 456–468. [Google Scholar] [CrossRef]
- Jian, L.; Yuze, S.; Huamei, W.; Xiangnan, W.; Kuan, L.; Hongming, Q. Study on measurement uncertainty of energy conversion efficiency of tidal energy converters. Energy Rep. 2024, 12, 4883–4890. [Google Scholar] [CrossRef]
- Liu, X.; Lu, J.; Ren, T.; Yu, F.; Cen, Y.; Li, C.; Yuan, S. Review of research on wake characteristics in horizontal-axis tidal turbines. Ocean. Eng. 2024, 312, 119159. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, Z.; Liu, X.; Xiao, Y.; Chen, C.; Wang, H.; Yan, J. Numerical prediction of pressure pulsation for a low head bidirectional tidal bulb turbine. Energy 2015, 89, 730–738. [Google Scholar] [CrossRef]
- Liu, L.-Q.; Liu, C.-X.; Sun, Z.-Y.; Han, R.-C. The development and application practice of neglected tidal energy in China. Renew. Sustain. Energy Rev. 2011, 15, 1089–1097. [Google Scholar] [CrossRef]
- Mazumder, R.; Arima, M. Tidal rhythmites and their implications. Earth Sci. Rev. 2005, 69, 79–95. [Google Scholar] [CrossRef]
- You, Y.; Li, W.; Liu, W.; Li, X. Development status and perspective of marine energy conversion systems. Autom. Electr. Power Syst. 2010, 34, 1–12. [Google Scholar]
- Yang, S.; Zhu, W.; Tu, Y.; Cao, G.; Chen, X.; Du, Z.; Fan, J.; Huang, Y. Study on the influence of heave plate on energy capture performance of central pipe oscillating water column wave energy converter. Energy 2024, 312, 133517. [Google Scholar] [CrossRef]
- Wu, J.; Yao, Y.; Zhou, L.; Chen, N.; Yu, H.; Li, W.; Göteman, M. Performance analysis of solo Duck wave energy converter arrays under motion constraints. Energy 2017, 139, 155–169. [Google Scholar] [CrossRef]
- Chen, A.; You, Y.; Sheng, S.; Lin, H.; Ye, Y.; Huang, S. Nonlinear analysis of the crashworthy component of an eagle wave energy converter in rotating-collision. Ocean. Eng. 2016, 125, 285–294. [Google Scholar] [CrossRef]
- Sheng, S.; Wang, K.; Lin, H.; Zhang, Y.; You, Y.; Wang, Z.; Chen, A.; Jiang, J.; Wang, W.; Ye, Y. Model research and open sea tests of 100 kW wave energy convertor Sharp Eagle Wanshan. Renew. Energy 2017, 113, 587–595. [Google Scholar] [CrossRef]
- Lu, Q.; Shi, H. Progress and Future Trend of Wave Energy Technology in China. Costal Eng. 2022, 41, 1–12. [Google Scholar]
- Drew, B.; Plummer, A.R.; Sahinkaya, M.N. A review of wave energy converter technology. Proc. Inst. Mech. Eng. Part A J. Power Energy 2016, 223, 887–902. [Google Scholar] [CrossRef]
- Du, X.; Li, P.; Li, Z.; Liu, X.; Wang, W.; Feng, Q.; Du, L.; Yu, H.; Wang, J.; Xie, X.; et al. Multi-pillar piezoelectric stack harvests ocean wave energy with oscillating float buoy. Energy 2024, 298, 131347. [Google Scholar] [CrossRef]
- Guo, X.; Liu, Y.; Zhang, X. Layout Optimization of Wave Energy Park Based on Multi-Objective Optimization Algorithm. J. Offshore Mech. Arct. Eng. 2024, 147, 42001. [Google Scholar] [CrossRef]
- Sun, P.; He, H.; Chen, H.; Zhang, J.; Li, H. Sensitivity analysis of geometric characteristics on the cavity-buoy for energy capture efficiency enhancement of a semi-submersible floating-array-buoy wave energy converter system. Ocean. Eng. 2024, 294, 116735. [Google Scholar] [CrossRef]
- Li, D.; Li, D.; Li, F.; Shi, J.; Zhang, W. Analysis of Floating Buoy of a Wave Power Generating Jack-Up Platform Haiyuan 1. Adv. Mech. Eng. 2013, 5, 105072. [Google Scholar] [CrossRef]
- Wang, S. Design and Power Calculation Analysis of Oscillating Float-Type Wave Energy Device; Ocean University of China: Qingdao, China, 2013. [Google Scholar]
- Hansen, R.; Kramer, M.; Vidal, E. Discrete Displacement Hydraulic Power Take-Off System for the Wavestar Wave Energy Converter. Energies 2013, 6, 4001–4044. [Google Scholar] [CrossRef]
- Edwards, K.; Mekhiche, M. Ocean Testing of a Wave-Capturing Powerbuoy; Marine Energy Technology Symposium: Washington, DC, USA, 2013. [Google Scholar]
- Wacher, A.; Neilsen, K. Mathematical and numerical modeling of the AquaBuOY wave energy converter. Math. Ind. Case Stud. 2010, 2, 16–33. [Google Scholar]
- Babarit, A. On the park effect in arrays of oscillating wave energy converters. Renew. Energy 2013, 58, 68–78. [Google Scholar] [CrossRef]
- Lai, W. Design and Experimental Study of a Rocker Wave Energy Converter; Zhejiang Ocean University: Zhoushan, China, 2020. [Google Scholar]
- Jiang, X.; Cao, F.; Shi, H.; Zhu, K.; Zhang, C. Optimization of pendulum-based wave energy converter through mathematical approximation. Appl. Energy 2025, 378, 124754. [Google Scholar] [CrossRef]
- Zhao, C.; Han, M.; Johanning, L.; Shi, H. Multi-freedom effects on a raft-type wave energy convertor- hydrodynamic response and energy absorption. Ocean. Eng. 2024, 305, 117964. [Google Scholar] [CrossRef]
- Wan, Z.; Zheng, H.; Sun, K.; Zhou, K. A model and experiment study of an improved pendulor wave energy converter. Energy Procedia 2017, 105, 283–288. [Google Scholar] [CrossRef]
- Liu, C.; Yang, Q.; Bao, G. Performance investigation of a two-raft-type wave energy converter with hydraulic power take-off unit. Appl. Ocean. Res. 2017, 62, 139–155. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Sun, W.; Li, J. Ocean wave energy converters: Technical principle, device realization, and performance evaluation. Renew. Sustain. Energy Rev. 2021, 141, 110764. [Google Scholar] [CrossRef]
- Falcão, A.F.d.O. Wave energy utilization: A review of the technologies. Renew. Sustain. Energy Rev. 2010, 14, 899–918. [Google Scholar] [CrossRef]
- Khan, M.J.; Bhuyan, G.; Iqbal, M.T.; Quaicoe, J.E. Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review. Appl. Energy 2009, 86, 1823–1835. [Google Scholar] [CrossRef]
- Nachtane, M.; Tarfaoui, M.; Goda, I.; Rouway, M. A review on the technologies, design considerations and numerical models of tidal current turbines. Renew. Energy 2020, 157, 1274–1288. [Google Scholar] [CrossRef]
- Corsatea, T.D.; Magagna, D. Overview of European Innovation Activities in Marine Energy Technology; European Commission: Brussels, Belgium, 2013. [Google Scholar]
- Fraenkel, P.L. Development and testing of Marine Current Turbine’s SeaGen 1.2 MW tidal stream turbine. In Proceedings of the 3rd International Conference on Ocean Energy, Bilbao, Spain, 6–8 October 2010. [Google Scholar]
- Liu, H.; Li, W.; Lin, Y.; Ma, S. Model analysis and test research of horizontal-axis marine current turbine. Acta Energiae Solaris Sin. 2009, 30, 633–638. [Google Scholar]
- European Marine Energy Centre (EMEC) Ltd. Available online: http://www.emec.org.uk/about-us/our-tidal-clients/open-hydro/ (accessed on 25 April 2025).
- Ma, Y.; Hu, C.; Li, L. Hydrodynamics and wake flow analysis of a Π-type vertical axis twin-rotor tidal current turbine in surge motion. Ocean. Eng. 2021, 224, 108625. [Google Scholar] [CrossRef]
- Zhang, X. Currents to Power Generation and the Development of Simulator. Master’s Thesis, Northeast Normal University, Changchun, China, 2009. [Google Scholar]
- Borg, M.G.; Xiao, Q.; Allsop, S.; Incecik, A.; Peyrard, C. A Numerical Swallowing-Capacity Analysis of a Vacant, Cylindrical, Bi-Directional Tidal Turbine Duct in Aligned & Yawed Flow Conditions. J. Mar. Sci. Eng. 2021, 9, 182. [Google Scholar] [CrossRef]
- Zeiner-Gundersen, D.H. A novel flexible foil vertical axis turbine for river, ocean, and tidal applications. Appl. Energy 2015, 151, 60–66. [Google Scholar] [CrossRef]
- Satrio, D.; Utama, I.K.A.P.; Mukhtasor, M. Vertical axis tidal current turbine: Advantages and challenges review. Proc. Ocean. Mech. Aerosp. Sci. Eng. 2016, 3, 64–71. [Google Scholar]
- Kirke, B.K.; Lazauskas, L. Limitations of fixed pitch Darrieus hydrokinetic turbines and the challenge of variable pitch. Renew. Energy 2011, 36, 893–897. [Google Scholar] [CrossRef]
- Charlier, R.H. A “sleeper” awakes: Tidal current power. Renew. Sustain. Energy Rev. 2003, 7, 515–529. [Google Scholar] [CrossRef]
- Jing, F.; Sheng, Q.; Zhang, L. Experimental research on tidal current vertical axis turbine with variable-pitch blades. Ocean. Eng. 2014, 88, 228–241. [Google Scholar] [CrossRef]
- Wang, S. Study on Hydrodynamic Performances of a Tidal Current Energy Conversion Device with Flexible Blade Turbine. Ph.D. Thesis, China Ocean University, Qingdao, China, 2009. [Google Scholar]
- Marsh, P.; Ranmuthugala, D.; Penesis, I.; Thomas, G.A. Three-dimensional numerical simulations of straight-bladed vertical axis tidal turbines investigating power output, torque ripple and mounting forces. Renew. Energy 2015, 83, 67–77. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Y.; Wu, X.; Guo, S. Review of the applied mechanical problems in ocean thermal energy conversion. Renew. Sustain. Energy Rev. 2018, 93, 231–244. [Google Scholar] [CrossRef]
- Kalina, A.I. Combined-cycle system with novel bottoming cycle. J. Eng. Gas Turbines Power 1984, 106, 737–742. [Google Scholar] [CrossRef]
- Uehara, H.; IKEGAMI, Y.; NISHIDA, T. Performance analysis of OTEC system using a cycle with absorption and extraction processes. Trans. Jpn. Soc. Mech. Eng. Ser. B 1998, 64, 2750–2755. [Google Scholar] [CrossRef]
- Liu, W.; Chen, F.; Wang, Y.; Jiang, W. Progress of closed-cycle OTEC and study of a new cycle of OTEC. Adv. Mater. Res. 2011, 354–355, 275–278. [Google Scholar] [CrossRef]
- Chen, F. Study on Thermal Performance and Comprehensive Utilization of Ocean Thermal Energy Conversion. Ph.D. Thesis, Harbin Engineering University, Harbin, China, 2016. [Google Scholar]
- Zhang, Y.; Deng, J.; Deng, Z. Thermodynamic and economic analysis of ocean thermal energy conversion system using zeotropic mixtures. Case Stud. Therm. Eng. 2024, 64, 105408. [Google Scholar] [CrossRef]
- Lu, B.; Yu, Y.; Tian, M.; Chen, Y.; Zhang, L.; Liu, Y. Experimental study of a high-power generation platform for ocean thermal energy conversion. Energy 2024, 309, 133115. [Google Scholar] [CrossRef]
- Jiao, Y.; Song, L.; Zhao, C.; An, Y.; Lu, W.; He, B.; Yang, C. Membrane-based indirect power generation technologies for harvesting salinity gradient energy—A review. Desalination 2022, 525, 115485. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Z.; Shi, Y.; Chen, X.; Qiao, N.; Li, C. The synergistic effects of salinity and pressure gradients on sustainable energy conversion in nanofluidics. Desalination 2024, 586, 117885. [Google Scholar] [CrossRef]
- Siria, A.; Bocquet, M.L.; Bocquet, L. New avenues for the large-scale harvesting of blue energy. Nat. Rev. Chem. 2017, 1, 91. [Google Scholar] [CrossRef]
- Achilli, A.; Cath, T.Y.; Childress, A.E. Power generation with pressure retarded osmosis: An experimental and theoretical investigation. J. Membr. Sci. 2009, 343, 42–52. [Google Scholar] [CrossRef]
- Wang, S.; Liu, H.; Gu, J.; Sun, H.; Zhang, M.; Liu, Y. Technology feasibility and economic viability of an innovative integrated ceramic membrane bioreactor and reverse osmosis process for producing ultrapure water from municipal wastewater. Chem. Eng. J. 2019, 375, 122078. [Google Scholar] [CrossRef]
- Ligaray, M.; Kim, N.; Park, S.; Park, J.-S.; Park, J.; Kim, Y.; Cho, K.H. Energy projection of the seawater battery desalination system using the reverse osmosis system analysis model. Chem. Eng. J. 2020, 395, 125082. [Google Scholar] [CrossRef]
- Wang, P.; Wang, M.; Liu, F.; Ding, S.; Wang, X.; Du, G.; Liu, J.; Apel, P.; Kluth, P.; Trautmann, C.; et al. Ultrafast ion sieving using nanoporous polymeric membranes. Nat. Commun. 2018, 9, 569. [Google Scholar] [CrossRef]
- Suk, M.E.; Aluru, N.R. Water Transport through Ultrathin Graphene. J. Phys. Chem. Lett. 2010, 1, 1590–1594. [Google Scholar] [CrossRef]
- Lohrasebi, A.; Rikhtehgaran, S. Ion separation and water purification by applying external electric field on porous graphene membrane. Nano Res. 2018, 11, 2229–2236. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, W.; Ju, X.; Xie, R.; Chu, L. Graphene-based membranes for molecular and ionic separations in aqueous environments. Chin. J. Chem. Eng. 2017, 25, 1598–1605. [Google Scholar] [CrossRef]
- Gravelle, S.; Yoshida, H.; Joly, L.; Ybert, C.; Bocquet, L. Carbon membranes for efficient water-ethanol separation. J. Chem. Phys. 2016, 145, 124708. [Google Scholar] [CrossRef]
- Song, N.; Gao, X.; Ma, Z.; Wang, X.; Wei, Y.; Gao, C. A review of graphene-based separation membrane: Materials, characteristics, preparation and applications. Desalination 2018, 437, 59–72. [Google Scholar] [CrossRef]
- Xu, J.; Zhu, C.; Wang, Y.; Li, H.; Huang, Y.; Shen, Y.; Francisco, J.S.; Zeng, X.C.; Meng, S. Water transport through subnanopores in the ultimate size limit: Mechanism from molecular dynamics. Nano Res. 2019, 12, 587–592. [Google Scholar] [CrossRef]
- Nguyen, C.T.; Beskok, A. Saltwater transport through pristine and positively charged graphene membranes. J. Chem. Phys. 2018, 149, 24704. [Google Scholar] [CrossRef]
- Li, Z.; Qiu, Y.; Li, K.; Sha, J.; Li, T.; Chen, Y. Optimal design of graphene nanopores for seawater desalination. J. Chem. Phys. 2018, 148, 14703. [Google Scholar] [CrossRef]
- Yu, H.; He, Y.; Xiao, G.; Fan, Y.; Ma, J.; Gao, Y.; Hou, R.; Yin, X.; Wang, Y.; Mei, X. The roles of oxygen-containing functional groups in modulating water purification performance of graphene oxide-based membrane. Chem. Eng. J. 2020, 389, 124375. [Google Scholar] [CrossRef]
- Wang, Y.; He, Z.; Gupta, K.M.; Shi, Q.; Lu, R. Molecular dynamics study on water desalination through functionalized nanoporous graphene. Carbon 2017, 116, 120–127. [Google Scholar] [CrossRef]
- Mejía-Marchena, R.; Maturana-Córdoba, A.; Fernández-Rojano, S. Unveiling the enhancing potential of water pretreatment on energy efficiency in reverse electrodialysis systems—A comprehensive review. J. Water Process Eng. 2023, 56, 104548. [Google Scholar] [CrossRef]
- Jang, J.; Kang, Y.; Han, J.-H.; Jang, K.; Kim, C.-M.; Kim, I.S. Developments and future prospects of reverse electrodialysis for salinity gradient power generation: Influence of ion exchange membranes and electrodes. Desalination 2020, 491, 114540. [Google Scholar] [CrossRef]
- Pattle, R.E. Production of electric power by mixing fresh and salt water in the hydroelectric pile. Nature 1954, 174, 660. [Google Scholar] [CrossRef]
- Suda, F.; Matsuo, T.; Ushioda, D. Transient changes in the power output from the concentration difference cell (dialytic battery) between seawater and river water. Energy 2007, 32, 165–173. [Google Scholar] [CrossRef]
- Turek, M.; Bandura, B. Renewable energy by reverse electrodialysis. Desalination 2007, 205, 67–74. [Google Scholar] [CrossRef]
- Post, J.W.; Hamelers, H.V.M.; Buisman, C.J.N. Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system. Environ. Sci. Technol. 2008, 42, 5785–5790. [Google Scholar] [CrossRef]
- Galama, A.H.; Vermaas, D.A.; Veerman, J.; Saakes, M.; Rijnaarts, H.H.M.; Post, J.W.; Nijmeijer, K. Membrane resistance: The effect of salinity gradients over a cation exchange membrane. J. Membr. Sci. 2014, 467, 279–291. [Google Scholar] [CrossRef]
- Veerman, J.; de Jong, R.M.; Saakes, M.; Metz, S.J.; Harmsen, G.J. Reverse electrodialysis: Comparison of six commercial membrane pairs on the thermodynamic efficiency and power density. J. Membr. Sci. 2009, 343, 7–15. [Google Scholar] [CrossRef]
- Veerman, J.; Saakes, M.; Metz, S.J.; Harmsen, G.J. Reverse electrodialysis: Performance of a stack with 50 cells on the mixing of sea and river water. J. Membr. Sci. 2009, 327, 136–144. [Google Scholar] [CrossRef]
- Dlugolecki, P.; Gambier, A.; Nijmeijer, K.; Wessling, M. Practical potential of reverse electrodialysis as process for sustainable energy generation. Environ. Sci. Technol. 2009, 43, 6888–6894. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Li, J.; Wang, Z.; Zhang, C.; Kong, X. Salinity gradient energy capture for power production by reverse electrodialysis experiment in thermal desalination plants. J. Power Sources 2022, 519, 230806. [Google Scholar] [CrossRef]
- Deng, H.; Feng, M.; Tian, M.; He, Y. Recovery of salinity gradient energy in brine from seawater desalination using reverse electrodialysis. Chem. Ind. Eng. 2018, 35, 54–61. [Google Scholar] [CrossRef]
- Zhang, C. Coupling Modeling and Dynamic Response Analysis of a Integrated System of Deep-Sea Aquaculture Cage-Floating Offshore Wind Turbine; Shanghai Ocean University: Shanghai, China, 2023. [Google Scholar]
- Liu, H.-F.; Zhao, T.-H.; Liu, Y. Investigation on dynamic performance of semi-submersible aquaculture platform in two mooring forms. Ocean. Eng. 2024, 297, 117092. [Google Scholar] [CrossRef]
- Chen, Y. Study on Hydronamic and Dynamic Analysis for Mooring System of Aquaculture Unit; Dalian University of Technology: Dalian, China, 2020. [Google Scholar]
- Bao, X.; Chen, Z.; Cui, M.; Huang, W. Discussion and consideration on the development of deep sea aquaculture equipment in China. Fish. Mod. 2022, 49, 8–14. [Google Scholar]
- Yu, J.; Cheng, X.; Fan, Y.; Ni, X.; Chen, Y.; Ye, Y. Mooring design of offshore aquaculture platform and its dynamic performance. Ocean. Eng. 2023, 275, 114146. [Google Scholar] [CrossRef]
- Gharechae, A.; Ketabdari, M.J. Semi-analytical study of wave interaction with a submerged permeable sphere applied on a spherical aquaculture cage. Ocean. Eng. 2023, 272, 113839. [Google Scholar] [CrossRef]
- Xu, Z.; Bi, C.-W.; Ma, C. Nonlinear dynamics of an aquaculture cage array under oblique wave attack. Ocean. Eng. 2023, 288, 115948. [Google Scholar] [CrossRef]
- Slagstad, M.; Haver, S.; Amdahl, J. A comparison of extreme value estimation methods for the forces in aquaculture net cages. Ocean. Eng. 2024, 313, 119311. [Google Scholar] [CrossRef]
- Li, N.; Shi, W.; Han, X.; Li, X.; Verma, A.S.; Liu, C. Dynamic analysis of an integrated offshore structure comprising a jacket-supported offshore wind turbine and aquaculture steel cage. Ocean. Eng. 2023, 274, 114059. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhao, H.; Li, X.; Feng, M.; Zhou, Y. Effects of aquaculture cage and netting on dynamic responses of novel 10 MW barge-type floating offshore wind turbine. Ocean. Eng. 2024, 295, 116896. [Google Scholar] [CrossRef]
- Afewerki, S.; Osmundsen, T.; Olsen, M.S.; Størkersen, K.V.; Misund, A.; Thorvaldsen, T. Innovation policy in the Norwegian aquaculture industry: Reshaping aquaculture production innovation networks. Mar. Policy 2023, 152, 105624. [Google Scholar] [CrossRef]
- Chu, Y.I.; Wang, C.M.; Park, J.C.; Lader, P.F. Review of cage and containment tank designs for offshore fish farming. Aquaculture 2020, 519, 734928. [Google Scholar] [CrossRef]
- Bilen, S.; Kızak, V.; Gezen, A. Floating Fish Farm Unit (3FU). Is it an Appropriate Method for Salmonid Production. Mar. Sci. Technol. Bull. 2013, 2, 9–13. [Google Scholar]
- Bartolome, F.d.; Mendez, A. The tuna offshore unit: Concept and operation. IEEE J. Ocean. Eng. 2005, 30, 20–27. [Google Scholar] [CrossRef]
- Numerous Norwegian Development Permits Still Awaiting Decision. Available online: https://www.intrafish.com/aquaculture/numerous-norwegian-development-permits-still-awaiting-decision/2-1-855145 (accessed on 25 April 2025).
- Liu, X. Deep-Sea Aquaculture Has Great Potential; Study Times: New York, NY, USA, 2023. [Google Scholar]
- Neves, D.; Silva, C.A.; Connors, S. Design and implementation of hybrid renewable energy systems on micro-communities: A review on case studies. Renew. Sustain. Energy Rev. 2014, 31, 935–946. [Google Scholar] [CrossRef]
- Parkinson, S.C.; Dragoon, K.; Reikard, G.; García-Medina, G.; Özkan-Haller, H.T.; Brekken, T.K.A. Integrating ocean wave energy at large-scales: A study of the US Pacific Northwest. Renew. Energy 2015, 76, 551–559. [Google Scholar] [CrossRef]
- Kim, K.-H.; Lee, K.; Sohn, J.M.; Park, S.-W.; Choi, J.-S.; Hong, K. Conceptual Design of 10MW Class Floating Wave-Offshore Wind Hybrid Power Generation System. In Proceedings of the Proceedings of the Twenty-fifth (2015) International Ocean and Polar Engineering Conference, Big Island, HI, USA, 21–26 June 2015. [Google Scholar]
- Zhang, X.; Wu, X.; Wu, Z.; Xu, H. Research on wind/photovoltaic/wave energy hybrid system application on islands. Renew. Energy Resour. 2004, 2, 42–44. [Google Scholar] [CrossRef]
- Tedd, J.; Peter Kofoed, J. Measurements of overtopping flow time series on the Wave Dragon, wave energy converter. Renew. Energy 2009, 34, 711–717. [Google Scholar] [CrossRef]
- Gu, X.; Lin, F.; Jiang, W.; Xu, J.; Liu, J.-M.; Wang, K.; Tao, T. Power performance and dynamic characteristics of a 15 MW floating wind turbine with wave energy converter combined concept. Sustain. Horiz. 2025, 13, 100125. [Google Scholar] [CrossRef]
- Xu, S.; Ji, B.; Xu, F.; Chen, C. Dynamic response and power performance of a combined semi-submersible floating wind turbine and point absorber wave energy converter array. Renew. Energy 2024, 237, 121903. [Google Scholar] [CrossRef]
- Yang, W. Reaserch and Design of Control System Based on Wave and Wind Energy Complementary Generation Platform; North China Electric Power University: Beijing, China, 2015. [Google Scholar]
- He, G.; Zhao, C.; Liu, C.; He, R.; Luan, Z. Power absorption and dynamic response analysis of a hybrid system with a semi-submersible wind turbine and a Salter’s duck wave energy converter array. Energy 2024, 305, 132210. [Google Scholar] [CrossRef]
- Zhang, W.; Ren, Z.; Xu, Y.; Zhang, B.; Chen, H.; Li, H. A New Type of Wind-Wave Complementary Power Generation Device. 2023. Available online: https://cprs.patentstar.com.cn/Search/Detail?ANE=9BHB9GIF9FDB9GDD9HCB5AFABBIA9EEDCDHA9AIB7AAA6AGA (accessed on 25 April 2025).
- Fredriksson, S.T.; Broström, G.; Bergqvist, B.; Lennblad, J.; Nilsson, H. Modelling Deep Green tidal power plant using large eddy simulations and the actuator line method. Renew. Energy 2021, 179, 1140–1155. [Google Scholar] [CrossRef]
- Wang, S.; Li, Z.; Yu, T.; Ma, C. A review of research on multi-energy complementary ocean energy integrated power generation technology. Mar. Energy Bull. 2019, 38, 241–249. [Google Scholar] [CrossRef]
- Fan, Y. Research on Hydraulic Marine Multi-Energy Complementary Power Generation System with Seawater Medium; Xian University of Technology: Xian, China, 2018. [Google Scholar]
- Wu, Z.; Gao, T.; Zhang, S. Design and research on device of generating power by wind and wave at sea. Adv. Mater. Res. 2013, 718–720, 1667–1672. [Google Scholar] [CrossRef]
- Cao, S.; Cheng, Y.; Duan, J.; Li, J.; Wang, Y. Experimental study of a semi-submersible floating wind turbine with aquaculture cages under combined wind and irregular waves. Energy 2024, 306, 132527. [Google Scholar] [CrossRef]
- Fan, Z.-Q.; Liang, Y.-H.; Yun-Peng, Z. Review of the research on the hydrodynamics of fishing cage nets. Ocean. Eng. 2023, 276, 114192. [Google Scholar] [CrossRef]
- Wu, H.; Wang, Y.; Wei, Q.; Zhang, H. Present situation and development countermeasures of far-reaching marine aquaculture in Fujian Province. Ocean. Dev. Manag. 2023, 40, 120–126. [Google Scholar] [CrossRef]
- Nassar, W.M.; Anaya-Lara, O.; Ahmed, K.H.; Campos-Gaona, D.; Elgenedy, M. Assessment of Multi-Use Offshore Platforms: Structure Classification and Design Challenges. Sustainability 2020, 12, 1860. [Google Scholar] [CrossRef]
- Ma, Y.; Xie, G.; Xu, J.; Li, L. Hydrodynamic performance analysis of floating marine ranching equipment in frequency domain. Ship Eng. 2021, 43, 1–5+16. [Google Scholar] [CrossRef]
- Quevedo, E.; Cartón, M.; Delory, E.; Castro, A. Multi-use offshore platform configurations in the scope of the FP7 TROPOS Project. In Proceedings of the OCEANS, Bergen, Norway, 10–14 June 2013. [Google Scholar]
- Ma, Y.; Xie, G.; Xu, J.; Jiang, D. Design of mooring system of semi-submersible marine ranching plant. Ship Eng. 2022, 44, 14–21+27. [Google Scholar] [CrossRef]
Horizontal Axis Wind Turbine | Vertical Axis Wind Turbine | |
---|---|---|
Application status | Rich model tests experience; rich practical experience. | Started late; low aerodynamic efficiency [24]. |
Layout | The arrangement interval of turbines is larger than 10 times the rotor diameter [25]. | The arrangement interval of turbines is larger than 4 times the rotor diameter [26]. |
Conversion efficiency | Close to the ultimate value of 53.9% [27]. | Smaller than horizontal axis wind turbine. |
Transmission mechanism | Large floating structure is needed to ensure the stability of the system. | Small floating structure can ensure the stability of the system. |
Structural fatigue | Large-scale design will aggravate the blade fatigue [27]. | Periodic torsional load has adverse effects on transmission and control system [28]. |
Extreme condition | Maximum operating wind speed is 25 m/s [17]. | Maximum operating wind speed is 65 m/s [29]. |
Installation issues | Large floating equipment is required to hoist the blades, transmission structure, and power generation mechanism. | The installation can be completed at the wharf [28]. |
Station Name | Country | Installed Capacity (MW) | Operation Mode | Operation Year |
---|---|---|---|---|
Lens | France | 240 | Single reservoir, bidirectional | 1966 |
Kislo | Russia | 0.8 | Single reservoir, bidirectional | 1968 |
Jiangxia | China | 4 | Single reservoir, bidirectional | 1980 |
Annapolis | Canada | 20 | Single reservoir, one way | 1984 |
Sihwa Lake | Korea | 254 | Single reservoir, bidirectional | 2011 |
Converter Type | Advantages | Shortcomings | Applicable Scenarios |
---|---|---|---|
OWC | No subsea moving parts; convenient delivery; good reliability | High construction cost; low efficiency | Heavy wind and wave |
Duck and Eagle | High efficiency under ideal operation (close to 90%) | Complex structure; excessive exposure to seawater; poor reliability; easily damaged | Regular wave condition |
Oscillating float type | Low construction difficulty and cost; high absorbing efficiency | The float is easily damaged due to multiple impacts | Providing power for lighthouses and buoys |
Pendulum type | Lower cost; higher efficiency | Poor reliability; easily damaged; maintenance difficulty | Applicable to breakwater |
Raft type | High efficiency | Mooring difficulty; high cost | High wave energy density |
Contraction channel | Good reliability; low maintenance costs; less affected by wave behavior | Strict requirements for terrain and channel | Narrow terrain region |
Name | Power (MW) | Flow Rate (m/s) | Number of Blades | Runner Diameter (m) | Blade Sweep Area (m2) |
---|---|---|---|---|---|
DCNS OpenHydro | 2 | 4 | 10 | 16 | 181 |
Atlantis AR-1000 | 1 | 2.65 | 3 | 18 | 254 |
SeaGen S | 2 | 2.4 | 2 | 20 | 314 |
Voith | 1 | 2.9 | 3 | 16 | 194 |
Sabella D10 | 1.1 | 4 | 6 | 10 | 78.5 |
GE-Alstom | 1 | 2.7 | 3 | 18 | 254 |
Name | Country | Volume (×104 m3) | Application Scenarios | Working Condition | Operation Year |
---|---|---|---|---|---|
Ocean Farm #1 | Norway | 25 | Deep-sea | Semi-Submersible | 2018 |
HAVFARM #1 | Norway | 40 | Deep-sea | Semi-Submersible | 2020 |
Changjing #1 | China | 6.4 | Offshore | Bottom-Supported | 2019 |
Haixia #1 | China | 15 | Deep-sea | Semi-Submersible | 2020 |
Xinhuan #1 | China | 6.4 | Deep-sea | Semi-Submersible | 2024 |
Zhannong #1 | China | 6.2 | Deep-sea | Bottom-Supported | 2024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, J.; Liu, J.; Liu, X.; Zeng, C.; Hu, H.; Luo, Y. A Review of Marine Renewable Energy Utilization Technology and Its Integration with Aquaculture. Energies 2025, 18, 2343. https://doi.org/10.3390/en18092343
Cao J, Liu J, Liu X, Zeng C, Hu H, Luo Y. A Review of Marine Renewable Energy Utilization Technology and Its Integration with Aquaculture. Energies. 2025; 18(9):2343. https://doi.org/10.3390/en18092343
Chicago/Turabian StyleCao, Jingwei, Jinkai Liu, Xin Liu, Chongji Zeng, Hewen Hu, and Yongyao Luo. 2025. "A Review of Marine Renewable Energy Utilization Technology and Its Integration with Aquaculture" Energies 18, no. 9: 2343. https://doi.org/10.3390/en18092343
APA StyleCao, J., Liu, J., Liu, X., Zeng, C., Hu, H., & Luo, Y. (2025). A Review of Marine Renewable Energy Utilization Technology and Its Integration with Aquaculture. Energies, 18(9), 2343. https://doi.org/10.3390/en18092343