Data-Driven Visualization of the Dynamics of Geothermal Energy and Hot Dry Rock Research
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data Sources
2.2. Analysis Tools and Methods
3. Results and Discussion
3.1. Trend Analysis of Publishing
3.2. Analysis of Disciplines and Research Categories
3.3. Analysis of Countries, Institutions, and Authors
3.3.1. Mainly Researching Countries and Regions
3.3.2. High-Yield Research Institutions and Their Collaborative Networks
3.3.3. Main Researchers and Their Collaborative Relationships
3.4. Analysis of Journals and Highly Cited Literature
3.4.1. Main Published Journals and Their Influence
3.4.2. The Research Content and Influence of Highly Cited Literature
3.5. Analysis of Keywords
3.5.1. Keyword Co-Occurrence Network and Research Hotspots
3.5.2. Keyword Clustering and Emergence Analysis
3.5.3. Time Evolution and Future Trend Prediction of Research Hotspots
4. Future Prospects
4.1. Fracture Propagation Under Differential Stress
4.2. The Challenge of Sustainable Development
4.3. Multidisciplinary Collaboration and Application Prospects
5. Conclusions
- (1)
- This study conducted a bibliometric analysis of 1764 publications related to geothermal energy and hot dry rocks. The findings reveal that research from 1996 to 2023 can be divided into three distinct phases, with a rapid growth phase beginning in 2014, characterized by a significant annual increase in publications. “Multidisciplinary Geosciences” emerged as the dominant category in the Web of Science, followed by Energy & Fuels, Environmental Sciences, Physical Chemistry, and Engineering. The publication trends across different academic categories show considerable variation, with major research areas including Geology, Engineering, Environmental Science & Ecology, and Materials Science.
- (2)
- Research outcomes related to geothermal energy and hot dry rocks have been published in over 600 journals, with Geothermics being the most productive. Among the publications from more than 70 countries, approximately 72% are single-country studies, while 28% are the result of international collaborations. China leads the field, followed by the United States, Germany, and Australia. Research on hot dry rock development is gaining increasing attention in developing countries, with the Chinese Academy of Sciences being a major research institution in this area. Over 5400 authors have contributed to research on geothermal energy and hot dry rocks, with a relatively small number of single-author papers. On average, each paper has 4.6 co-authors, indicating close collaboration among countries, institutions, and researchers.
- (3)
- Research in geothermal energy and hot dry rocks encompasses various technical fields, such as EGS, hydraulic fracturing technology, and environmental impact assessments. Keyword co-occurrence analysis, cluster analysis, and burst analysis show that early research focused on the assessment and development of hot dry rock resources. As technology advanced, EGS technology and its environmental impact became research hotspots, particularly studies aimed at improving system efficiency and reducing environmental impacts. In the latest phase, the interdisciplinary application and technological integration of geothermal energy and hot dry rocks have gradually become research frontiers.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Farghali, M.; Osman, A.I.; Mohamed, I.M.; Chen, Z.; Chen, L.; Ihara, I.; Yap, P.-S.; Rooney, D.W. Strategies to save energy in the context of the energy crisis: A review. Environ. Chem. Lett. 2023, 21, 2003–2039. [Google Scholar] [CrossRef] [PubMed]
- Hassan, Q.; Viktor, P.; Al-Musawi, T.J.; Ali, B.M.; Algburi, S.; Alzoubi, H.M.; Al-Jiboory, A.K.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M. The renewable energy role in the global energy Transformations. Renew. Energy Focus 2024, 48, 100545. [Google Scholar] [CrossRef]
- Alacali, M. Geothermal reaction of the Seferihisar geothermal system after the Samos earthquake and geothermal energy potential of the Seferihisar geothermal system, İzmir, Türkiye. Environ. Earth Sci. 2023, 82, 354. [Google Scholar] [CrossRef]
- Kalisz, S.; Kibort, K.; Mioduska, J.; Lieder, M.; Małachowska, A. Waste management in the mining industry of metals ores, coal, oil and natural gas—A review. J. Environ. Manag. 2022, 304, 114239. [Google Scholar] [CrossRef] [PubMed]
- Maggio, G.; Cacciola, G. When will oil, natural gas, and coal peak? Fuel 2012, 98, 111–123. [Google Scholar] [CrossRef]
- Zhu, Z.D.; Wang, L.X.; Zhu, S.; Wu, J.Y. Study on the Anisotropy of Strength Properties of Columnar Jointed Rock Masses Using a Geometric Model Reconstruction Method Based on a Single-Random Movement Voronoi Diagram of Uniform Seed Points. Symmetry 2023, 15, 944. [Google Scholar] [CrossRef]
- Herzog, H.; Eliasson, B.; Kaarstad, O. Capturing greenhouse gases. Sci. Am. 2000, 282, 72–79. [Google Scholar] [CrossRef]
- Wang, L.X.; Zhu, Z.D.; Zhu, S.; Wu, J.Y. A Case Study on Tunnel Excavation Stability of Columnar Jointed Rock Masses with Different Dip Angles in the Baihetan Diversion Tunnel. Symmetry 2023, 15, 1232. [Google Scholar] [CrossRef]
- Depledge, J. The Paris Agreement: A significant landmark on the road to a climatically safe world. Chin. J. Urban Environ. Stud. 2016, 4, 1650011. [Google Scholar] [CrossRef]
- Bilgen, S.; Kaygusuz, K.; Sari, A. Renewable energy for a clean and sustainable future. Energy Sources 2004, 26, 1119–1129. [Google Scholar] [CrossRef]
- Panwar, N.L.; Kaushik, S.C.; Kothari, S. Role of renewable energy sources in environmental protection: A review. Renew. Sustain. Energy Rev. 2011, 15, 1513–1524. [Google Scholar] [CrossRef]
- Ani, C.C.; Arinze, I.J.; Emedo, C.O.; Madukwe, C.F.; Akaerue, E.I.; Obumselu, C.A. Curie point depth and heat flow estimations for geothermal energy exploration in parts of southern Nigeria’s inland basins. Environ. Dev. Sustain. 2024, 1–24. [Google Scholar] [CrossRef]
- Tester, J.W.; Anderson, B.J.; Batchelor, A.S.; Blackwell, D.D.; DiPippo, R.; Drake, E.M.; Garnish, J.; Livesay, B.; Moore, M.; Nichols, K. The future of geothermal energy. Mass. Inst. Technol. 2006, 358, 1–3. [Google Scholar]
- Zhu, J.; Hu, K.; Lu, X.; Huang, X.; Liu, K.; Wu, X. A review of geothermal energy resources, development, and applications in China: Current status and prospects. Energy 2015, 93, 466–483. [Google Scholar] [CrossRef]
- Lebbihiat, N.; Atia, A.; Arıcı, M.; Meneceur, N. Geothermal energy use in Algeria: A review on the current status compared to the worldwide, utilization opportunities and countermeasures. J. Clean. Prod. 2021, 302, 126950. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, Q.; Andrews-Speed, P.; Mclellan, B. Quantitative assessment of the environmental risks of geothermal energy: A review. J. Environ. Manag. 2020, 276, 111287. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.-Y.; Gao, M.; Shah, K.J.; Zheng, J.; Pei, S.-L.; Chiang, P.-C. Establishment of enhanced geothermal energy utilization plans: Barriers and strategies. Renew. Energy 2019, 132, 19–32. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, G.-F. A global review of deep geothermal energy exploration: From a view of rock mechanics and engineering. Geomech. Geophys. Geo-Energy Geo-Resour. 2020, 6, 4. [Google Scholar] [CrossRef]
- Tester, J.W.; Beckers, K.F.; Hawkins, A.J.; Lukawski, M.Z. The evolving role of geothermal energy for decarbonizing the United States. Energy Environ. Sci. 2021, 14, 6211–6241. [Google Scholar] [CrossRef]
- Feng, G.; Wang, X.; Wang, M.; Kang, Y. Experimental investigation of thermal cycling effect on fracture characteristics of granite in a geothermal-energy reservoir. Eng. Fract. Mech. 2020, 235, 107180. [Google Scholar] [CrossRef]
- Xu, T.; Wang, Y.; Feng, G. Research progress and development prospect of deep supercritical geothermal resources. Nat. Gas Ind. 2021, 41, 155–167. [Google Scholar]
- Aliyu, M.D.; Archer, R.A. A thermo-hydro-mechanical model of a hot dry rock geothermal reservoir. Renew. Energy 2021, 176, 475–493. [Google Scholar] [CrossRef]
- Zhou, Z.; Jin, Y.; Zeng, Y.; Zhang, X.; Zhou, J.; Zhuang, L.; Xin, S. Investigation on fracture creation in hot dry rock geothermal formations of China during hydraulic fracturing. Renew. Energy 2020, 153, 301–313. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, C.; Guo, T.; He, J.; Zhang, L.; Chen, S.; Qu, Z. Study on the cracking mechanism of hydraulic and supercritical CO2 fracturing in hot dry rock under thermal stress. Energy 2021, 221, 119886. [Google Scholar] [CrossRef]
- Yang, R.; Huang, Z.; Shi, Y.; Yang, Z.; Huang, P. Laboratory investigation on cryogenic fracturing of hot dry rock under triaxial-confining stresses. Geothermics 2019, 79, 46–60. [Google Scholar] [CrossRef]
- Lei, Z.; Zhang, Y.; Yu, Z.; Hu, Z.; Li, L.; Zhang, S.; Fu, L.; Zhou, L.; Xie, Y. Exploratory research into the enhanced geothermal system power generation project: The Qiabuqia geothermal field, Northwest China. Renew. Energy 2019, 139, 52–70. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, G.; Jia, X.; Li, S.; Zhang, S.; Hu, D.; Hu, S.; Wang, Y. Parametric study of the production performance of an enhanced geothermal system: A case study at the Qiabuqia geothermal area, northeast Tibetan plateau. Renew. Energy 2019, 132, 959–978. [Google Scholar] [CrossRef]
- Soltani, M.; Moradi Kashkooli, F.; Dehghani-Sanij, A.; Nokhosteen, A.; Ahmadi-Joughi, A.; Gharali, K.; Mahbaz, S.; Dusseault, M. A comprehensive review of geothermal energy evolution and development. Int. J. Green Energy 2019, 16, 971–1009. [Google Scholar] [CrossRef]
- Ball, P.J. A review of geothermal technologies and their role in reducing greenhouse gas emissions in the USA. J. Energy Resour. Technol. 2021, 143, 010904. [Google Scholar] [CrossRef]
- Kelkar, S.; WoldeGabriel, G.; Rehfeldt, K. Lessons learned from the pioneering hot dry rock project at Fenton Hill, USA. Geothermics 2016, 63, 5–14. [Google Scholar] [CrossRef]
- Matsunaga, I.; Niitsuma, H.; Oikawa, Y. Review of the HDR development at Hijiori Site, Japan. In Proceedings of the World Geothermal Congress, Antalya, Turkey, 24–29 April 2005; pp. 1–5. [Google Scholar]
- Gérard, A.; Kappelmeyer, O. The Soultz-sous-Forêts project. Geothermics 1987, 16, 393–399. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, G.; Zhu, X.; Li, T. Occurrence of geothermal resources and prospects for exploration and development in China. Energy Explor. Exploit. 2021, 39, 536–552. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, H.; Tao, S. Opportunity and challenges in large-scale geothermal energy exploitation in China. Crit. Rev. Environ. Sci. Technol. 2022, 52, 3813–3834. [Google Scholar] [CrossRef]
- Zhu, S.; Zhu, Z.; Wang, L.; Wu, J. Research Progress and Hot Spot Analysis of the Propagation and Evolution Law of Prefabricated Cracks in Defective Rocks. Materials 2023, 16, 4623. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhu, Z.; Wu, J.; Zhao, X. Bibliometric analysis of research progress and perspectives of deep underground rockburst using knowledge mapping method. Sustainability 2023, 15, 13578. [Google Scholar] [CrossRef]
- Wang, L.; Luo, D.; Hamdaoui, O.; Vasseghian, Y.; Momotko, M.; Boczkaj, G.; Kyzas, G.Z.; Wang, C. Bibliometric analysis and literature review of ultrasound-assisted degradation of organic pollutants. Sci. Total Environ. 2023, 876, 162551. [Google Scholar] [CrossRef]
- Xu, C.; Yang, T.; Wang, K.; Guo, L.; Li, X. Knowledge domain and hotspot trends in coal and gas outburst: A scientometric review based on CiteSpace analysis. Environ. Sci. Pollut. Res. 2023, 30, 29086–29099. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, Y.; Li, C.; He, H.; Li, X. Rockburst prediction and prevention in underground space excavation. Undergr. Space 2024, 14, 70–98. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, Z.; Xie, X.; Wu, J. Research Progress and Hotspots on Disposal of Landfill Leachate: A Bibliometric Analysis Using Knowledge Mapping Method. Pol. J. Environ. Stud. 2024, 33, 2373–2381. [Google Scholar] [CrossRef]
- Wang, W.; Lu, C. Visualization analysis of big data research based on Citespace. Soft Comput. 2020, 24, 8173–8186. [Google Scholar] [CrossRef]
- Stefansson, V. The renewability of geothermal energy. In Proceedings of the World Geothermal Congress, Kyushu-Tohoku, Japan, 28 May–10 June 2000; pp. 883–888. [Google Scholar]
- Glassley, W.E. Geothermal Energy: Renewable Energy and the Environment; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Zhang, Y.; Zhang, Y.; Zhou, L.; Lei, Z.; Guo, L.; Zhou, J. Reservoir stimulation design and evaluation of heat exploitation of a two-horizontal-well enhanced geothermal system (EGS) in the Zhacang geothermal field, Northwest China. Renew. Energy 2022, 183, 330–350. [Google Scholar] [CrossRef]
- Song, X.Z.; Shi, Y.; Li, G.S.; Yang, R.Y.; Wang, G.S.; Zheng, R.; Li, J.C.; Lyu, Z.H. Numerical simulation of heat extraction performance in enhanced geothermal system with multilateral wells. Appl. Energy 2018, 218, 325–337. [Google Scholar] [CrossRef]
- Kumari, W.; Ranjith, P. Sustainable development of enhanced geothermal systems based on geotechnical research—A review. Earth-Sci. Rev. 2019, 199, 102955. [Google Scholar] [CrossRef]
- Xu, T.; Zhang, Y.; Zeng, Z.; Bao, X. Technology progress in an enhanced geothermal system (hot dry rock). Sci. Technol. Rev. 2012, 30, 42–45. [Google Scholar]
- Sun, Q.; Lü, C.; Cao, L.; Li, W.; Geng, J.; Zhang, W. Thermal properties of sandstone after treatment at high temperature. Int. J. Rock Mech. Min. Sci. 2016, 85, 60–66. [Google Scholar] [CrossRef]
- Lund, J.W.; Freeston, D.H.; Boyd, T.L. Direct application of geothermal energy: 2005 worldwide review. Geothermics 2005, 34, 691–727. [Google Scholar] [CrossRef]
- Tao, J.; Shi, A.-C.; Li, H.-T.; Zhou, J.-W.; Yang, X.-G.; Lu, G.-D. Thermal-mechanical modelling of rock response and damage evolution during excavation in prestressed geothermal deposits. Int. J. Rock Mech. Min. Sci. 2021, 147, 104913. [Google Scholar] [CrossRef]
- Goswami, S.; Rai, A.K. An assessment of prospects of geothermal energy in India for energy sustainability. Renew. Energy 2024, 233, 121118. [Google Scholar] [CrossRef]
- Lu, S.M. A global review of enhanced geothermal system (EGS). Renew. Sustain. Energy Rev. 2018, 81, 2902–2921. [Google Scholar] [CrossRef]
- Olasolo, P.; Juárez, M.C.; Morales, M.P.; D’Amico, S.; Liarte, I.A. Enhanced geothermal systems (EGS): A review. Renew. Sustain. Energy Rev. 2016, 56, 133–144. [Google Scholar] [CrossRef]
- Kumari, W.G.P.; Ranjith, P.G.; Perera, M.S.A.; Li, X.; Li, L.H.; Chen, B.K.; Isaka, B.L.A.; De Silva, V.R.S. Hydraulic fracturing under high temperature and pressure conditions with micro CT applications: Geothermal energy from hot dry rocks. Fuel 2018, 230, 138–154. [Google Scholar] [CrossRef]
- Sun, Z.X.; Zhang, X.; Xu, Y.; Yao, J.; Wang, H.X.; Lv, S.H.; Sun, Z.L.; Huang, Y.; Cai, M.Y.; Huang, X.X. Numerical simulation of the heat extraction in EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model. Energy 2017, 120, 20–33. [Google Scholar] [CrossRef]
- Yang, S.Q.; Ranjith, P.G.; Jing, H.W.; Tian, W.L.; Ju, Y. An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments. Geothermics 2017, 65, 180–197. [Google Scholar] [CrossRef]
- Yao, J.; Zhang, X.; Sun, Z.X.; Huang, Z.Q.; Liu, J.R.; Li, Y.; Xin, Y.; Yan, X.; Liu, W.Z. Numerical simulation of the heat extraction in 3D-EGS with thermal hydraulic-mechanical coupling method based on discrete fractures model. Geothermics 2018, 74, 19–34. [Google Scholar] [CrossRef]
- Xu, T.F.; Yuan, Y.L.; Jia, X.F.; Lei, Y.D.; Li, S.T.; Feng, B.; Hou, Z.Y.; Jiang, Z.J. Prospects of power generation from an enhanced geothermal system by water circulation through two horizontal wells: A case study in the Gonghe Basin, Qinghai Province, China. Energy 2018, 148, 196–207. [Google Scholar] [CrossRef]
- Zhang, W.; Qu, Z.Q.; Guo, T.K.; Wang, Z.Y. Study of the enhanced geothermal system (EGS) heat mining from variably fractured hot dry rock under thermal stress. Renew. Energy 2019, 143, 855–871. [Google Scholar] [CrossRef]
- Kumari, W.G.P.; Ranjith, P.G.; Perera, M.B.A.; Chen, B.K.; Abdulagatov, I.M. Temperature-dependent mechanical behaviour of Australian Strathbogie granite with different cooling treatments. Eng. Geol. 2017, 229, 31–44. [Google Scholar] [CrossRef]
- Kumar, L.; Hossain, M.S.; Assad, M.E.H.; Manoo, M.U. Technological advancements and challenges of geothermal energy systems: A comprehensive review. Energies 2022, 15, 9058. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, Z.; Zhao, Y.; Wan, Z. Experimental investigation on thermal cracking, permeability under HTHP and application for geothermal mining of HDR. Energy 2017, 132, 305–314. [Google Scholar] [CrossRef]
- Zhang, Q.B.; Zhao, J. A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mech. Rock Eng. 2014, 47, 1411–1478. [Google Scholar] [CrossRef]
- Zhu, S.; Zheng, J.; Zhu, Z.; Zhu, Q.; Zhou, L. Experiments on three-dimensional flaw dynamic evolution of transparent rock-like material under osmotic pressure. Tunn. Undergr. Space Technol. 2022, 128, 104624. [Google Scholar] [CrossRef]
- Zhu, S.; Zhang, Y.; Shao, J.; Zhu, Z.; Zhang, X.; Wu, J. Experimental and theoretical study on crack growth using rock-like resin samples containing inherent fissures and its numerical assessment. Rock Mech. Rock Eng. 2024, 57, 4815–4834. [Google Scholar] [CrossRef]
- Demirbas, A. Global renewable energy projections. Energy Sources Part B 2009, 4, 212–224. [Google Scholar] [CrossRef]
- Zhu, S.; Shao, J.; Zhu, H.; Zhu, Z.; Wang, F.; Wu, J. Grouting mechanism of quick-setting slurry in fracture with random fracture opening considering time–space characteristics of viscosity. Acta Geotech. 2024, 19, 6517–6534. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, H.; Zhu, Q.; Wang, Y. Experimental and numerical simulation of three-point bending fracture of brittle materials with inverted T-shaped obstacle cracks. Theor. Appl. Fract. Mech. 2023, 128, 104155. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, F.-Y.; Tan, D.-Y.; Yang, A.-W. A deep learning informed-mesoscale cohesive numerical model for investigating the mechanical behavior of shield tunnels with crack damage. Structures 2024, 66, 106902. [Google Scholar] [CrossRef]
- Xia, K.; Chen, C.; Liu, X.; Liu, X.; Yuan, J.; Dang, S. Assessing the stability of high-level pillars in deeply-buried metal mines stabilized using cemented backfill. Int. J. Rock Mech. Min. Sci. 2023, 170, 105489. [Google Scholar] [CrossRef]
- Xia, Y.; Liu, B.; Zhang, C.; Liu, N.; Zhou, H.; Chen, J.; Tang, C.a.; Gao, Y.; Zhao, D.; Meng, Q. Investigations of mechanical and failure properties of 3D printed columnar jointed rock mass under true triaxial compression with one free face. Geomech. Geophys. Geo-Energy Geo-Resour. 2022, 8, 26. [Google Scholar] [CrossRef]
- Ahmadi, A.; Assad, M.E.H.; Jamali, D.; Kumar, R.; Li, Z.; Salameh, T.; Al-Shabi, M.; Ehyaei, M. Applications of geothermal organic Rankine Cycle for electricity production. J. Clean. Prod. 2020, 274, 122950. [Google Scholar] [CrossRef]
- Shengjun, Z.; Huaixin, W.; Tao, G. Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation. Appl. Energy 2011, 88, 2740–2754. [Google Scholar] [CrossRef]
- Avci, A.C.; Kaygusuz, O.; Kaygusuz, K. Geothermal energy for sustainable development. J. Eng. Res. Appl. Sci. 2020, 9, 1414–1426. [Google Scholar]
- Baba, A.; Chandrasekharam, D. Geothermal resources for sustainable development: A case study. Int. J. Energy Res. 2022, 46, 20501–20518. [Google Scholar] [CrossRef]
- Noorollahi, Y.; Shabbir, M.S.; Siddiqi, A.F.; Ilyashenko, L.K.; Ahmadi, E. Review of two decade geothermal energy development in Iran, benefits, challenges, and future policy. Geothermics 2019, 77, 257–266. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, W.; Zhu, Q.; Shao, J.-F. A novel elastic–plastic damage model for rock materials considering micro-structural degradation due to cyclic fatigue. Int. J. Plast. 2023, 160, 103496. [Google Scholar] [CrossRef]
Rank | Categories | Total Publication | Centrality | Initial Year | |
---|---|---|---|---|---|
No. | % | ||||
1 | Geosciences, Multidisciplinary | 671 | 0.38 | 0.61 | 1996 |
2 | Energy & Fuels | 733 | 0.41 | 0.39 | 1996 |
3 | Environmental Sciences | 117 | 0.10 | 0.23 | 2002 |
4 | Chemistry, Physical | 17 | 0.01 | 0.22 | 2007 |
5 | Computer Science, Interdisciplinary Applications | 20 | 0.01 | 0.21 | 2013 |
6 | Geography, Physical | 7 | 0.00 | 0.15 | 2007 |
7 | Materials Science, Multidisciplinary | 36 | 0.02 | 0.14 | 2003 |
8 | Engineering, Electrical & Electronic | 11 | 0.00 | 0.14 | 2000 |
9 | Mechanics | 114 | 0.06 | 0.12 | 1997 |
10 | Engineering, Chemical | 80 | 0.04 | 0.12 | 1996 |
Rank | Institute | Country | Total Publications | Centrality | Initial Year | |
---|---|---|---|---|---|---|
No. | % | |||||
1 | China University of Petroleum | China | 102 | 5.7 | 0.13 | 2014 |
2 | Chinese Academy of Sciences | China | 90 | 5.1 | 0.03 | 2009 |
3 | China University of Mining & Technology | China | 76 | 4.3 | 0.01 | 2013 |
4 | Helmholtz Association | Germany | 72 | 4.0 | 0.02 | 2002 |
5 | Jilin University | China | 68 | 3.8 | 0.08 | 2014 |
6 | United States Department of Energy (DOE) | America | 53 | 3.0 | 0.11 | 1998 |
7 | China Geological Survey | China | 52 | 2.9 | 0.02 | 2009 |
8 | China University of Geosciences | China | 51 | 2.8 | 0.10 | 2006 |
9 | Centre National de la Recherche Scientifique (CNRS) | France | 50 | 2.8 | 0.07 | 1997 |
10 | Helmholtz-Center Potsdam GFZ German Research Center for Geosciences | Germany | 48 | 2.7 | 0.10 | 2002 |
Rank | Author | Institution | Total Publication | Initial Year |
---|---|---|---|---|
No. | ||||
1 | Zhang, Yanjun | Jilin University | 22 | 2018 |
2 | Song, Xianzhi | China University of Petroleum | 16 | 2015 |
3 | Ranjith, PG | Monash University | 15 | 2016 |
4 | Xu, Tianfu | Jilin University | 14 | 2018 |
5 | Sun, Qiang | Xi’an University of Science & Technology | 14 | 2018 |
6 | Shi, Yu | Southwest Jiaotong University | 14 | 2018 |
7 | Raymond, Jasmin | University of Quebec | 13 | 2018 |
8 | Li, Gensheng | China University of Petroleum | 13 | 2018 |
9 | Sass, Ingo | Technical University of Darmstadt | 9 | 2011 |
10 | Saar, Martin O | Swiss Federal Institutes of Technology Domain | 9 | 2018 |
Rank | Journal | Total Publication | h-Index | Centrality | Initial Year | Impact Factor | |
---|---|---|---|---|---|---|---|
No. | % | ||||||
1 | Geothermics | 1226 | 0.69 | 58 | 0.08 | 1996 | 3.9 |
2 | Int J Rock Mech Min | 679 | 0.38 | 127 | 0.11 | 1996 | 7.2 |
3 | J Geophys Res-Sol Ea | 655 | 0.37 | 204 | 0.04 | 1996 | 3.9 |
4 | Energy | 561 | 0.32 | 158 | 0.02 | 2010 | 9 |
5 | Renew Sust Energ Rev | 548 | 0.31 | 222 | 0.01 | 2008 | 15.9 |
6 | Renew Energ | 537 | 0.30 | 157 | 0.03 | 2008 | 8.7 |
7 | Appl Therm Eng | 474 | 0.27 | 129 | 0.02 | 2009 | 6.4 |
8 | Tectonophysics | 460 | 0.26 | 149 | 0.07 | 1997 | 2.9 |
9 | Geophys Res Lett | 433 | 0.25 | 240 | 0.02 | 1998 | 5.2 |
10 | J Geophys Res | 417 | 0.23 | 295 | 0.02 | 1996 | / |
No. | Title | Authors | Total Citations | Cited Times | Year |
---|---|---|---|---|---|
1 | A global review of enhanced geothermal system (EGS) [52] | Lu, SM et al. | 116 | 0.02 | 2018 |
2 | Enhanced geothermal systems (EGS): A review [53] | Olasolo, P et al. | 72 | 0.02 | 2016 |
3 | Numerical simulation of heat extraction performance in enhanced geothermal system with multilateral wells [45] | Song, XZ et al. | 67 | 0.02 | 2018 |
4 | Hydraulic fracturing under high temperature and pressure conditions with micro CT applications: Geothermal energy from hot dry rocks [54] | Kumari, WGP et al. | 62 | 0.04 | 2018 |
5 | Numerical simulation of the heat extraction in EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model [55] | Sun, ZX et al. | 61 | 0.03 | 2017 |
6 | An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments [56] | Yang, SQ et al. | 52 | 0.02 | 2017 |
7 | Soil microbiomes with distinct assemblies through Numerical simulation of the heat extraction in 3D-EGS with thermal hydraulic-mechanical coupling method based on discrete fractures model [57] | Yao, J et al. | 49 | 0.01 | 2018 |
8 | Prospects of power generation from an enhanced geothermal system by water circulation through two horizontal wells: A case study in the Gonghe Basin, Qinghai Province, China [58] | Xu, TF et al. | 46 | 0.01 | 2018 |
9 | Study of the enhanced geothermal system (EGS) heat mining from variably fractured hot dry rock under thermal stress [59] | Zhang, W et al. | 40 | 0.02 | 2019 |
10 | Temperature-dependent mechanical behaviour of Australian Strathbogie granite with different cooling treatments [60] | Kumari, WGP et al. | 40 | 0.02 | 2017 |
Keywords | Year | Strength | Begin | End | Duration from 1996 to 2023 |
---|---|---|---|---|---|
Systems | 2010 | 5.92 | 2010 | 2016 | ---------------------------- |
Fractured granite reservoir | 2016 | 4.88 | 2016 | 2019 | ---------------------------- |
Groundwater flow | 2002 | 4.46 | 2016 | 2018 | ---------------------------- |
Acoustic emission | 2018 | 4.28 | 2020 | 2021 | ---------------------------- |
Transport | 2013 | 4.18 | 2015 | 2017 | ---------------------------- |
Geothermal systems | 2000 | 4.12 | 2017 | 2018 | ---------------------------- |
Australian strathbogie granite | 2018 | 3.95 | 2018 | 2021 | ---------------------------- |
Sequestration | 2014 | 3.92 | 2014 | 2018 | ---------------------------- |
Heat transfer | 1999 | 3.79 | 2010 | 2018 | ---------------------------- |
Shale | 2019 | 3.73 | 2019 | 2020 | ---------------------------- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Que, X.; Zhu, S.; Han, B. Data-Driven Visualization of the Dynamics of Geothermal Energy and Hot Dry Rock Research. Energies 2025, 18, 2342. https://doi.org/10.3390/en18092342
Que X, Zhu S, Han B. Data-Driven Visualization of the Dynamics of Geothermal Energy and Hot Dry Rock Research. Energies. 2025; 18(9):2342. https://doi.org/10.3390/en18092342
Chicago/Turabian StyleQue, Xiangcheng, Shu Zhu, and Bei Han. 2025. "Data-Driven Visualization of the Dynamics of Geothermal Energy and Hot Dry Rock Research" Energies 18, no. 9: 2342. https://doi.org/10.3390/en18092342
APA StyleQue, X., Zhu, S., & Han, B. (2025). Data-Driven Visualization of the Dynamics of Geothermal Energy and Hot Dry Rock Research. Energies, 18(9), 2342. https://doi.org/10.3390/en18092342