The Impact of Energy Efficiency Technologies, Political Stability and Environmental Taxes on Biocapacity in the USA
Abstract
1. Introduction
2. Literature Review
3. Data and Econometric Approach
4. Results
5. Discussion and Policy Recommendations
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Variable | Unit of Measurement | Definition | Source of Data |
Biocapacity | Global hectares (GHa) | Earth’s average carrying capacity | Global Footprint Network |
GDP | Constant 2010 USD per capita | Output | World Development Indicators database |
Energy efficiency technologies | Constant 2010 USD | Research and development (R&D) expenditures in energy efficiency | OECD Statistics |
Environmental taxes | Constant 2010 USD | Levies imposed on activities, products, or resources that have a proven negative impact on the environment | OECD Statistics |
Political stability and absence of violence/terrorism | Standardized score, ranging from approximately −2.5 to 2.5 | Perceived risk of political instability and politically motivated violence, including acts of terrorism | World Development Indicators Database |
References
- Rahmstorf, S. Climate and Weather at 3 Degrees More: Earth as We Don’t (Want to) Know It. In 3 Degrees More: The Impending Hot Season and How Nature Can Help Us Prevent It; Springer Nature: Cham, Switzerland, 2024; pp. 3–17. [Google Scholar]
- Gabbi, G.; Matthias, M.; Patrizi, N.; Pulselli, F.M.; Bastianoni, S. The biocapacity adjusted economic growth. Developing a new indicator. Ecol. Indic. 2021, 122, 107318. [Google Scholar] [CrossRef]
- Sarkodie, S.A. Environmental performance, biocapacity, carbon & ecological footprint of nations: Drivers, trends and mitigation options. Sci. Total Environ. 2021, 751, 141912. [Google Scholar] [PubMed]
- Sun, L.; Geng, Y.; Sarkis, J.; Yang, M.; Xi, F.; Zhang, Y.; Xue, B.; Luo, Q.; Ren, W.; Bao, T. Measurement of polycyclic aromatic hydrocarbons (PAHs) in a Chinese brownfield redevelopment site: The case of Shenyang. Ecol. Eng. 2013, 53, 115–119. [Google Scholar] [CrossRef]
- Lin, D.; Hanscom, L.; Murthy, A.; Galli, A.; Evans, M.; Neill, E.; Mancini, M.S.; Martindill, J.; Medouar, F.-Z.; Huang, S.; et al. Ecological footprint accounting for countries: Updates and results of the National Footprint Accounts, 2012–2018. Resources 2018, 7, 58. [Google Scholar] [CrossRef]
- Rees, W.E. Ecological footprints and appropriated carrying capacity: What urban economics leaves out. Environ. Urban. 1992, 4, 121–130. [Google Scholar] [CrossRef]
- Rees, W.; Wackernagel, M. Urban ecological footprints: Why cities cannot be sustainable—And why they are a key to sustainability. Environ. Impact Assess. Rev. 1996, 16, 223–248. [Google Scholar] [CrossRef]
- Geng, Y.; Côté, R.; Tsuyoshi, F. A quantitative water resource planning and management model for an industrial park level. Reg. Environ. Change 2007, 7, 123–135. [Google Scholar] [CrossRef]
- Özokcu, S.; Özdemir, Ö. Economic growth, energy, and environmental Kuznets curve. Renew. Sustain. Energy Rev. 2017, 72, 639–647. [Google Scholar] [CrossRef]
- Hashmi, R.; Alam, K. Dynamic relationship among environmental regulation, innovation, CO2 emissions, population, and economic growth in OECD countries: A panel investigation. J. Clean. Prod. 2019, 231, 1100–1109. [Google Scholar] [CrossRef]
- Magazzino, C.; Mele, M.; Schneider, N.; Shahbaz, M. Can biomass energy curtail environmental pollution? A quantum model approach to Germany. J. Environ. Manag. 2021, 287, 112293. [Google Scholar] [CrossRef]
- Ahmed, Z.; Le, H.P.; Shahzad, S.J.H. Toward environmental sustainability: How do urbanization, economic growth, and industrialization affect biocapacity in Brazil? Environ. Dev. Sustain. 2021, 24, 11676–11696. [Google Scholar] [CrossRef]
- Jia, C. Environmental Tax to Help China Fight Pollution. 2018. Available online: http://www.chinadaily.com.cn/a/201801/11/WS5a5699b7a3102e5b173740b4.html (accessed on 10 February 2025).
- Shahzad, U. Environmental taxes, energy consumption, and environmental quality: Theoretical survey with policy implications. Environ. Sci. Pollut. Res. 2020, 27, 24848–24862. [Google Scholar] [CrossRef]
- Lee, M.; Park, D.; Saunders, H. Asia’s Energy Adequacy, Environmental Sustainability, and Affordability: An Overview; Asian Development Bank: Mandaluyong, Philippines, 2014. [Google Scholar]
- Arimura, T.H.; Sugino, M. Energy-related environmental policy and its impacts on energy use in Asia. Asian Econ. Policy Rev. 2021, 16, 44–61. [Google Scholar] [CrossRef]
- Cheng, C.; Ren, X.; Dong, K.; Dong, X.; Wang, Z. How does technological innovation mitigate CO2 emissions in OECD countries? Heterogeneous analysis using panel quantile regression. J. Environ. Manag. 2021, 280, 111818. [Google Scholar] [CrossRef] [PubMed]
- Shahbaz, M.; Raghutla, C.; Song, M.; Zameer, H.; Jiao, Z. Public-private partnerships investment in energy as new determinant of CO2 emissions: The role of technological innovations in China. Energy Econ. 2020, 86, 104664. [Google Scholar] [CrossRef]
- Zhao, J.; Shahbaz, M.; Dong, X.; Dong, K. How does financial risk affect global CO2 emissions? The role of technological innovation. Technol. Forecast. Soc. Change 2021, 168, 120751. [Google Scholar] [CrossRef]
- Akram, R.; Chen, F.; Khalid, F.; Ye, Z.; Majeed, M.T. Heterogeneous effects of energy efficiency and renewable energy on carbon emissions: Evidence from developing countries. J. Clean. Prod. 2020, 247, 119122. [Google Scholar] [CrossRef]
- Balsalobre-Lorente, D.; Shahbaz, M.; Jabbour, C.J.C.; Driha, O.M. The role of energy innovation and corruption in carbon emissions: Evidence based on the EKC hypothesis. In Energy and Environmental Strategies in the Era of Globalization; Springer: Cham, Switzerland, 2019; pp. 271–304. [Google Scholar]
- Schneider, N. Renewable energy, energy efficiency, and CO2 emissions in developing countries: Evidence from the Pesaran (2006) common correlated effects model. SSRN Electron. J. 2020, 1–48. [Google Scholar] [CrossRef]
- Kaika, D.; Zervas, E. The Environmental Kuznets Curve (EKC) theory—Part A: Concept, causes and the CO2 emissions case. Energy Policy 2013, 62, 1392–1402. [Google Scholar] [CrossRef]
- Stern, D.I. The rise and fall of the environmental Kuznets curve. World Dev. 2004, 32, 1419–1439. [Google Scholar] [CrossRef]
- Fei, L.; Dong, S.; Xue, L.; Liang, Q.; Yang, W. Energy consumption-economic growth relationship and carbon dioxide emissions in China. Energy Policy 2011, 39, 568–574. [Google Scholar] [CrossRef]
- Zhang, S.; Shi, Q.; Cheng, M. Renewable natural capital, the biocapacity, and subjective well-being. J. Clean. Prod. 2017, 150, 277–286. [Google Scholar] [CrossRef]
- Chen, S.; Saud, S.; Saleem, N.; Bari, M.W. Nexus between financial development, energy consumption, income level, and ecological footprint in CEE countries: Do human capital and biocapacity matter? Environ. Sci. Pollut. Res. 2019, 26, 31856–31872. [Google Scholar]
- Pathak, S. Ecological footprints of war: An exploratory assessment of the long-term impact of violent conflicts on national biocapacity from 1962–2009. J. Environ. Stud. Sci. 2020, 10, 380–393. [Google Scholar] [CrossRef]
- Rahman, M.M.; Khan, Z.; Khan, S.; Abbas, S. Disaggregated energy consumption, industrialization, total population, and ecological footprint nexus: Evidence from the world’s top 10 most populous countries. Environ. Sci. Pollut. Res. 2023, 30, 119069–119083. [Google Scholar] [CrossRef]
- Sharif, A.; Baris-Tuzemen, O.; Uzuner, G.; Ozturk, I.; Sinha, A. Revisiting the role of renewable and non-renewable energy consumption on Turkey’s ecological footprint: Evidence from Quantile ARDL approach. Sustain. Cities Soc. 2020, 57, 102138. [Google Scholar] [CrossRef]
- Brooks, C. Linear and non-linear (non-) forecastability of high-frequency exchange rates. J. Forecast. 1997, 16, 125–145. [Google Scholar] [CrossRef]
- Zivot, E.; Andrews, D.W.K. Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis. J. Bus. Econ. Stat. 2002, 20, 25–44. [Google Scholar] [CrossRef]
- Cho, J.S.; Kim, T.H.; Shin, Y. Quantile cointegration in the autoregressive distributed-lag modeling framework. J. Econom. 2015, 188, 281–300. [Google Scholar] [CrossRef]
- Troster, V. Testing for Granger-causality in quantiles. Econom. Rev. 2018, 37, 850–866. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Environmental Impacts of a North American Free Trade Agreement. National Bureau of Economic Research (NBER) Working Paper; No. w3914. 1991. Available online: https://www.nber.org/papers/w3914 (accessed on 8 January 2025).
- Shafik, N.; Bandyopadhyay, S. Economic growth and environmental quality: Time series and cross section evidence. In Policy Research Working Paper Nº WPS904; World Bank: Washington, DC, USA, 1992. [Google Scholar]
- Panayotou, T. Empirical Tests and Policy Analysis of Environmental Degradation at Different Stages of Economic Development; No. 992927783402676; International Labour Organization: Geneva, Switzerland, 1993. [Google Scholar]
- Selden, T.M.; Song, D. Environmental quality and development: Is there a Kuznets curve for air pollution emissions? J. Environ. Econ. Manag. 1994, 27, 147–162. [Google Scholar] [CrossRef]
- Dijkgraaf, E.; Vollebergh, H.R. A test for parameter homogeneity in CO2 panel EKC estimations. Environ. Resour. Econ. 2005, 32, 229–239. [Google Scholar] [CrossRef]
- Sarkodie, S.A. The invisible hand and EKC hypothesis: What are the drivers of environmental degradation and pollution in Africa? Environ. Sci. Pollut. Res. 2018, 25, 21993–22022. [Google Scholar] [CrossRef]
- Ben Jebli, M.; Ben Youssef, S.; Ozturk, I. The Environmental Kuznets Curve: The Role of Renewable and Non-Renewable Energy Consumption and Trade Openness; University Library of Munich: Munich, Germany, 2013. [Google Scholar]
- Bilgili, F.; Koçak, E.; Bulut, U. The dynamic impact of renewable energy consumption on CO2 emissions: A revisited Environmental Kuznets Curve approach. Renew. Sustain. Energy Rev. 2016, 54, 838–845. [Google Scholar] [CrossRef]
- Iwata, H.; Okada, K.; Samreth, S. Empirical study on the determinants of CO2 emissions: Evidence from OECD countries. Appl. Econ. 2012, 44, 3513–3519. [Google Scholar] [CrossRef]
- Le, D.N. Environmental degradation and economic growth in ASEAN-10: The perspective of EKC hypothesis. Malays. J. Econ. Stud. 2019, 56, 43–62. [Google Scholar] [CrossRef]
- Adeel-Farooq, R.M.; Bakar, N.A.A.; Raji, J.O. Financial sector development and economic growth: A co-integration analysis for ASEAN countries. Int. J. Econ. Policy Emerg. Econ. 2020, 13, 195–208. [Google Scholar]
- Leal, P.H.; Marques, A.C. Rediscovering the EKC hypothesis for the 20 highest CO2 emitters among OECD countries by level of globalization. Int. Econ. 2020, 164, 36–47. [Google Scholar] [CrossRef]
- York, R.; Rosa, E.A.; Dietz, T. Footprints on the earth: The environmental consequences of modernity. Am. Sociol. Rev. 2003, 68, 279–300. [Google Scholar] [CrossRef]
- Moutinho, V.; Madaleno, M.; Elheddad, M. Determinants of the Environmental Kuznets Curve considering economic activity sector diversification in the OPEC countries. J. Clean. Prod. 2020, 271, 122642. [Google Scholar] [CrossRef]
- Moomaw, W.R.; Unruh, G.C. Are environmental Kuznets curves misleading us? The case of CO2 emissions. Environ. Dev. Econ. 1997, 2, 451–463. [Google Scholar] [CrossRef]
- Agras, J.; Chapman, D. A dynamic approach to the Environmental Kuznets Curve hypothesis. Ecol. Econ. 1999, 28, 267–277. [Google Scholar] [CrossRef]
- Heidari, H.; Katircioğlu, S.T.; Saeidpour, L. Economic growth, CO2 emissions, and energy consumption in the five ASEAN countries. Int. J. Electr. Power Energy Syst. 2015, 64, 785–791. [Google Scholar] [CrossRef]
- Pata, U.K.; Aydin, M. Testing the EKC hypothesis for the top six hydropower energy-consuming countries: Evidence from Fourier Bootstrap ARDL procedure. J. Clean. Prod. 2020, 264, 121699. [Google Scholar] [CrossRef]
- Mehmood, U. Biomass energy consumption and its impacts on ecological footprints: Analyzing the role of globalization and natural resources in the framework of EKC in SAARC countries. Environ. Sci. Pollut. Res. 2021, 29, 17513–17519. [Google Scholar] [CrossRef]
- Lee, C.C.; Chiu, Y.B.; Sun, C.H. The environmental Kuznets curve hypothesis for water pollution: Do regions matter? Energy Policy 2010, 38, 12–23. [Google Scholar] [CrossRef]
- Jalil, A.; Mahmud, S.F. Environment Kuznets curve for CO2 emissions: A cointegration analysis for China. Energy Policy 2009, 37, 5167–5172. [Google Scholar] [CrossRef]
- Shahbaz, M.; Khraief, N.; Uddin, G.S.; Ozturk, I. Environmental Kuznets curve in an open economy: A bounds testing and causality analysis for Tunisia. Renew. Sustain. Energy Rev. 2014, 34, 325–336. [Google Scholar] [CrossRef]
- Fodha, M.; Zaghdoud, O. Economic growth and pollutant emissions in Tunisia: An empirical analysis of the environmental Kuznets curve. Energy Policy 2010, 38, 1150–1156. [Google Scholar] [CrossRef]
- Baek, J.; Kim, H.S. Is economic growth good or bad for the environment? Empirical evidence from Korea. Energy Econ. 2013, 36, 744–749. [Google Scholar] [CrossRef]
- Pata, U.K. Renewable energy consumption, urbanization, financial development, income and CO2 emissions in Turkey: Testing EKC hypothesis with structural breaks. J. Clean. Prod. 2018, 187, 770–779. [Google Scholar] [CrossRef]
- Rana, R.; Sharma, M. Dynamic causality testing for EKC hypothesis, pollution haven hypothesis and international trade in India. J. Int. Trade Econ. Dev. 2019, 28, 348–364. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Ozturk, I. Investigating the environmental Kuznets curve hypothesis in Kenya: A multivariate analysis. Renew. Sustain. Energy Rev. 2020, 117, 109481. [Google Scholar] [CrossRef]
- Soytas, U.; Sari, R.; Ewing, B.T. Energy consumption, income, and carbon emissions in the United States. Ecol. Econ. 2007, 62, 482–489. [Google Scholar] [CrossRef]
- Wang, S.; Li, Q.; Fang, C.; Zhou, C. The relationship between economic growth, energy consumption, and CO2 emissions: Empirical evidence from China. Sci. Total Environ. 2016, 542, 360–371. [Google Scholar] [CrossRef]
- Fei, Q.; Rasiah, R.; Shen, L.J. The clean energy-growth nexus with CO2 emissions and technological innovation in Norway and New Zealand. Energy Environ. 2014, 25, 1323–1344. [Google Scholar] [CrossRef]
- Minlah, M.K.; Zhang, X. Testing for the existence of the Environmental Kuznets Curve (EKC) for CO2 emissions in Ghana: Evidence from the bootstrap rolling window Granger causality test. Environ. Sci. Pollut. Res. 2021, 28, 2119–2131. [Google Scholar] [CrossRef]
- Ozturk, I.; Al-Mulali, U.; Saboori, B. Investigating the environmental Kuznets curve hypothesis: The role of tourism and ecological footprint. Environ. Sci. Pollut. Res. 2016, 23, 1916–1928. [Google Scholar] [CrossRef]
- Al-Mulali, U.; Saboori, B.; Ozturk, I. Investigating the environmental Kuznets curve hypothesis in Vietnam. Energy Policy 2015, 76, 123–131. [Google Scholar] [CrossRef]
- Ulucak, R.; Bilgili, F. A reinvestigation of EKC model by ecological footprint measurement for high, middle and low income countries. J. Clean. Prod. 2018, 188, 144–157. [Google Scholar] [CrossRef]
- Koc, S.; Bulus, G.C. Testing validity of the EKC hypothesis in South Korea: Role of renewable energy and trade openness. Environ. Sci. Pollut. Res. 2020, 27, 29043–29054. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Mirza, N.; Vasbieva, D.G.; Abbas, Q.; Xiong, D. The nexus of carbon emissions, financial development, renewable energy consumption, and technological innovation: What should be the priorities in light of COP 21 Agreements? J. Environ. Manag. 2020, 271, 111027. [Google Scholar] [CrossRef]
- Magazzino, C.; Mele, M.; Schneider, N. Assessing a fossil fuels externality with a new neural networks and image optimisation algorithm: The case of atmospheric pollutants as confounders to COVID-19 lethality. Epidemiol. Infect. 2022, 150, e1. [Google Scholar] [CrossRef] [PubMed]
- Schumpeter, J. Capitalism, Socialism and Democracy New York. 1942. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1496200 (accessed on 18 January 2025).
- Balsalobre-Lorente, D.; Shahbaz, M.; Roubaud, D.; Farhani, S. How economic growth, renewable electricity and natural resources contribute to CO2 emissions? Energy Policy 2018, 113, 356–367. [Google Scholar] [CrossRef]
- Torras, M.; Boyce, J.K. Income, inequality, and pollution: A reassessment of the environmental Kuznets curve. Ecol. Econ. 1998, 25, 147–160. [Google Scholar] [CrossRef]
- Arrow, K.; Bolin, B.; Costanza, R.; Dasgupta, P.; Folke, C.; Holling, C.S.; Jansson, B.O.; Levin, S.; Mäler, K.G.; Perrings, C.; et al. Economic growth, carrying capacity, and the environment. Ecol. Econ. 1995, 15, 91–95. [Google Scholar] [CrossRef]
- Ahmed, A.; Uddin, G.S.; Sohag, K. Biomass energy, technological progress and the environmental Kuznets curve: Evidence from selected European countries. Biomass Bioenergy 2016, 90, 202–208. [Google Scholar] [CrossRef]
- Qayyum, M.; Ali, M.; Nizamani, M.M.; Li, S.; Yu, Y.; Jahanger, A. Nexus between Financial Development, Renewable Energy Consumption, Technological Innovations and CO2 Emissions: The Case of India. Energies 2021, 14, 4505. [Google Scholar] [CrossRef]
- Alvarez-Herranz, A.; Balsalobre-Lorente, D.; Shahbaz, M.; Cantos, J.M. Energy innovation and renewable energy consumption in the correction of air pollution levels. Energy Policy 2017, 105, 386–397. [Google Scholar] [CrossRef]
- Lorente, D.B.; Álvarez-Herranz, A. Economic growth and energy regulation in the environmental Kuznets curve. Environ. Sci. Pollut. Res. 2016, 23, 16478–16494. [Google Scholar] [CrossRef]
- Chen, Y.; Lee, C.C. Does technological innovation reduce CO2 emissions? Cross-country evidence. J. Clean. Prod. 2020, 263, 121550. [Google Scholar] [CrossRef]
- Yu, Y.; Du, Y. Impact of technological innovation on CO2 emissions and emissions trend prediction on ‘New Normal’ economy in China. Atmos. Pollut. Res. 2019, 10, 152–161. [Google Scholar] [CrossRef]
- Churchill, S.A.; Inekwe, J.; Smyth, R.; Zhang, X. R&D intensity and carbon emissions in the G7: 1870–2014. Energy Econ. 2019, 80, 30–37. [Google Scholar]
- Lin, B.; Zhu, J. Determinants of renewable energy technological innovation in China under CO2 emissions constraint. J. Environ. Manag. 2019, 247, 662–671. [Google Scholar] [CrossRef]
- Shahbaz, M.; Raghutla, C.; Chittedi, K.R.; Jiao, Z.; Vo, X.V. The effect of renewable energy consumption on economic growth: Evidence from the renewable energy country attractive index. Energy 2020, 207, 118162. [Google Scholar] [CrossRef]
- Çalışkan, H.K. Technological change and economic growth. Procedia-Soc. Behav. Sci. 2015, 195, 649–654. [Google Scholar] [CrossRef]
- Rafique, M.Z.; Fareed, Z.; Ferraz, D.; Ikram, M.; Huang, S. Exploring the heterogenous impacts of environmental taxes on environmental footprints: An empirical assessment from developed economies. Energy 2022, 238, 121753. [Google Scholar] [CrossRef]
- Hassan, S.T.; Baloch, M.A.; Mahmood, N.; Zhang, J. Linking economic growth and ecological footprint through human capital and biocapacity. Sustain. Cities Soc. 2019, 47, 101516. [Google Scholar]
- Ali, A.; Usman, M.; Usman, O.; Sarkodie, S.A. Modeling the effects of agricultural innovation and biocapacity on carbon dioxide emissions in an agrarian-based economy: Evidence from the dynamic ARDL simulations. Front. Energy Res. 2021, 8, 381. [Google Scholar] [CrossRef]
- Woodall, B. Japan: Paragon of Energy Efficiency, Green Growth Laggard. In Can Green Sustain Growth? Stanford University Press: Redwood City, CA, USA, 2020; pp. 150–169. [Google Scholar]
- Grassberger, P.; Procaccia, I. Measuring the strangeness of strange attractors. Phys. D Nonlinear Phenomena 1983, 9, 189–208. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Bounds testing approaches to the analysis of level relationships. J. Appl. Econom. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Xiao, Z. Quantile cointegrating regression. J. Econom. 2009, 150, 248–260. [Google Scholar] [CrossRef]
- Wald, A. Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans. Am. Math. Soc. 1943, 54, 426–482. [Google Scholar] [CrossRef]
- Granger, C.W. Investigating causal relations by econometric models and cross-spectral methods. Econom. J. Econom. Soc. 1969, 37, 424–438. [Google Scholar] [CrossRef]
- Dickey, D.A.; Fuller, W.A. Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 1979, 74, 427–431. [Google Scholar]
- Herbert, R.D.; Leeves, G. Troubles in wonderland. Complex. Int. 1999, 6, 258–271. [Google Scholar]
- Lucas, R.E.J. Econometric policy evaluation: A critique. In The Phillips Curve and Labor Markets; Brunner, K., Meltzer, A.H., Eds.; Elsevier: Amsterdam, The Netherlands, 1976; Available online: https://people.sabanciuniv.edu/atilgan/FE500_Fall2013/2Nov2013_CevdetAkcay/LucasCritique_1976.pdf (accessed on 18 January 2025).
- Bekiros, S. Forecasting with a state space time-varying parameter VAR model: Evidence from the Euro area. Econ. Model. 2014, 38, 619–626. [Google Scholar] [CrossRef]
- Cumming, G.S.; von Cramon-Taubadel, S. Linking economic growth pathways and environmental sustainability by understanding development as alternate social–ecological regimes. Proc. Natl. Acad. Sci. USA 2018, 115, 9533–9538. [Google Scholar] [CrossRef]
- Geng, Y.; Zhang, L.; Chen, X.; Xue, B.; Fujita, T.; Dong, H. Urban ecological footprint analysis: A comparative study between Shenyang in China and Kawasaki in Japan. J. Clean. Prod. 2014, 75, 130–142. [Google Scholar] [CrossRef]
- Glynn, J.; Perera, N.; Verma, R. Unit root tests and structural breaks: A survey with applications. J. Quant. Methods Econ. Bus. Adm. 2007, 3, 63–79. [Google Scholar]
- Moran, D.D.; Wackernagel, M.; Kitzes, J.A.; Goldfinger, S.H.; Boutaud, A. Measuring sustainable development—Nation by nation. Ecol. Econ. 2008, 64, 470–474. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Adams, S.; Owusu, P.A.; Leirvik, T.; Ozturk, I. Mitigating degradation and emissions in China: The role of environmental sustainability, human capital and renewable energy. Sci. Total Environ. 2020, 719, 137530. [Google Scholar] [CrossRef] [PubMed]
- Wackernagel, M.; Hanscom, L.; Jayasinghe, P.; Lin, D.; Murthy, A.; Neill, E.; Raven, P. The importance of resource security for poverty eradication. Nat. Sustain. 2021, 4, 731–738. [Google Scholar] [CrossRef]
- Wen, Q.; Chen, Y.; Hong, J.; Chen, Y.; Ni, D.; Shen, Q. Spillover effect of technological innovation on CO2 emissions in China’s construction industry. Build. Environ. 2020, 171, 106653. [Google Scholar] [CrossRef]
Dimension | m = 2 | m = 3 | m = 4 | m = 5 | m = 6 |
---|---|---|---|---|---|
Biocapacity | 0.030 * | 0.056 ** | 0.073 ** | 0.074 ** | 0.059 * |
Efficiency | 0.065 *** | 0.078 *** | 0.065 *** | 0.097 *** | 0.087 *** |
Taxes | 0.043 * | 0.079 *** | 0.094 *** | 0.090 *** | 0.046 * |
Stability | 0.020 * | 0.063 *** | 0.075 *** | 0.093 *** | 0.092 *** |
GDP | 0.679 *** | 0.960 *** | 0.590 ** | 0.734 *** | 0.744 *** |
Variable | Biocapacity | Efficiency | Taxes | Stability | GDP |
---|---|---|---|---|---|
ADF (Level) | −3.537 * | −2.948 * | −1.949 | −3.054 * | −1.698 |
ADF (Δ) | −5.663 *** | −4.367 | −6.370 *** | −6.911 *** | −5.746 *** |
ZA (Level) | −3.845 * | −4.087 ** | −3.117 | −4.911 *** | −1.482 |
Breaking point (year) | 2001 | 2015 | 2005 | 2018 | 2021 |
ZA (Δ) | −12.398 *** | −5.146 *** | −7.890 *** | −7.648 *** | −7.389 *** |
Breaking point (year) | 2004 | 2003 | 2020 | 2020 | 2009 |
Quantiles | p-Value for Harvey–Collier Test | Intercept | Error Correction Term | Long-Run | Short-Run | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
α | ρ | βefficiency | βtaxes | βstability | βGDP | φ1 (Biocapacity) | ω0 (Efficiency) | λ0 (Taxes) | θ0 (Stability) | δ0 (GDP) | ||
0.05 | 0.134 | 1.334 * | −0.330 *** | 0.077 ** | 0.039 ** | 0.047 * | −1.564 *** | 0.728 *** | 0.022 * | 0.021 | 0.077 | −0.613 *** |
0.10 | 0.176 | 1.439 * | −0.323 *** | 0.081 ** | 0.037 ** | 0.084 ** | −1.322 *** | 0.655 *** | 0.040 * | 0.024 | 0.184 | −0.605 *** |
0.20 | 0.113 | 0.984 | −0.315 ** | 0.093 ** | 0.082 *** | 0.091 ** | −1.118 *** | 0.486 *** | 0.033 * | 0.058 ** | 0.233 * | −0.579 ** |
0.30 | 0.204 | 0.943 | −0.303 ** | 0.099 *** | 0.090 *** | 0.108 *** | −1.144 *** | 0.704 *** | 0.041 * | 0.049 ** | 0.194 ** | −0.533 ** |
0.40 | 0.174 | 0.691 | −0.256 * | 0.102 ** | 0.081 *** | 0.121 *** | −0.899 *** | 0.685 *** | 0.034 | 0.066 ** | 0.336 ** | −0.422 ** |
0.50 | 0.296 | 0.993 * | −0.182 | 0.053 | 0.083 ** | 0.011 | −0.763 ** | 0.506 *** | 0.014 | 0.051 * | 0.395 ** | −0.417 ** |
0.60 | 0.332 | 1.117 ** | −0.165 | 0.059 | −0.029 * | 0.033 | −0.722 *** | 0.500 *** | 0.021 | 0.038 | 0.322 ** | −0.367 ** |
0.70 | 0.275 | 1.255 ** | −0.140 | 0.041 | −0.022 * | 0.031 | −0.617 ** | 0.598 *** | 0.028 | 0.011 | 0.259 * | −0.258 * |
0.80 | 0.406 | 1.367 ** | −0.176 ** | 0.058 | −0.015 | 0.056 * | −0.502 ** | 0.636 *** | 0.022 | 0.013 | 0.268 * | −0.139 |
0.90 | 0.385 | 1.445 ** | −0.199 ** | −0.021 | −0.011 | 0.029 * | −0.419 ** | 0.755 *** | 0.031 | 0.012 | 0.119 | −0.144 |
0.95 | 0.274 | 1.494 ** | −0.221 ** | −0.026 | −0.010 | 0.014 | −0.295 ** | 0.725 *** | 0.016 | 0.019 | 0.075 | −0.166 |
Parameters | Wald Statistics |
---|---|
Long-term Parameters | |
ρ | 8.115 *** |
βefficiency | 6.557 *** |
βtaxes | 5.156 *** |
βstability | 5.987 *** |
βGDP | 4.543 *** |
Short-term Parameters | |
φ1 | 5.886 *** |
ω0 | 3.237 *** |
λ0 | 2.045 ** |
θ0 | 2.103 ** |
δ0 | 2.778 ** |
Quantiles | [0.05–0.95] | 0.05 | 0.10 | 0.20 | 0.30 | 0.40 | 0.50 | 0.60 | 0.70 | 0.80 | 0.90 | 0.95 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ΔEfficiencyt to Biocapacityt | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
ΔBiocapacityt to ΔEfficiencyt | 0.411 | 0.420 | 0.423 | 0.354 | 0.399 | 0.433 | 0.450 | 0.438 | 0.453 | 0.423 | 0.456 | 0.422 |
ΔTaxest to Biocapacityt | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.319 | 0.309 | 0.328 | 0.375 |
ΔBiocapacityt to ΔTaxest | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.565 | 0.566 | 0.528 | 0.598 | 0.565 |
ΔStabilityt to Biocapacityt | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
ΔBiocapacityt to ΔStabilityt | 0.933 | 0.904 | 0.888 | 0.888 | 0.772 | 0.716 | 0.694 | 0.669 | 0.683 | 0.683 | 0.714 | 0.856 |
ΔGDPt to Biocapacityt | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
ΔBiocapacityt to ΔGDPt | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simionescu, M. The Impact of Energy Efficiency Technologies, Political Stability and Environmental Taxes on Biocapacity in the USA. Energies 2025, 18, 2180. https://doi.org/10.3390/en18092180
Simionescu M. The Impact of Energy Efficiency Technologies, Political Stability and Environmental Taxes on Biocapacity in the USA. Energies. 2025; 18(9):2180. https://doi.org/10.3390/en18092180
Chicago/Turabian StyleSimionescu, Mihaela. 2025. "The Impact of Energy Efficiency Technologies, Political Stability and Environmental Taxes on Biocapacity in the USA" Energies 18, no. 9: 2180. https://doi.org/10.3390/en18092180
APA StyleSimionescu, M. (2025). The Impact of Energy Efficiency Technologies, Political Stability and Environmental Taxes on Biocapacity in the USA. Energies, 18(9), 2180. https://doi.org/10.3390/en18092180