The Impact of Energy Efficiency Technologies, Political Stability and Environmental Taxes on Biocapacity in the USA
Abstract
:1. Introduction
2. Literature Review
3. Data and Econometric Approach
4. Results
5. Discussion and Policy Recommendations
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Variable | Unit of Measurement | Definition | Source of Data |
Biocapacity | Global hectares (GHa) | Earth’s average carrying capacity | Global Footprint Network |
GDP | Constant 2010 USD per capita | Output | World Development Indicators database |
Energy efficiency technologies | Constant 2010 USD | Research and development (R&D) expenditures in energy efficiency | OECD Statistics |
Environmental taxes | Constant 2010 USD | Levies imposed on activities, products, or resources that have a proven negative impact on the environment | OECD Statistics |
Political stability and absence of violence/terrorism | Standardized score, ranging from approximately −2.5 to 2.5 | Perceived risk of political instability and politically motivated violence, including acts of terrorism | World Development Indicators Database |
References
- Rahmstorf, S. Climate and Weather at 3 Degrees More: Earth as We Don’t (Want to) Know It. In 3 Degrees More: The Impending Hot Season and How Nature Can Help Us Prevent It; Springer Nature: Cham, Switzerland, 2024; pp. 3–17. [Google Scholar]
- Gabbi, G.; Matthias, M.; Patrizi, N.; Pulselli, F.M.; Bastianoni, S. The biocapacity adjusted economic growth. Developing a new indicator. Ecol. Indic. 2021, 122, 107318. [Google Scholar] [CrossRef]
- Sarkodie, S.A. Environmental performance, biocapacity, carbon & ecological footprint of nations: Drivers, trends and mitigation options. Sci. Total Environ. 2021, 751, 141912. [Google Scholar] [PubMed]
- Sun, L.; Geng, Y.; Sarkis, J.; Yang, M.; Xi, F.; Zhang, Y.; Xue, B.; Luo, Q.; Ren, W.; Bao, T. Measurement of polycyclic aromatic hydrocarbons (PAHs) in a Chinese brownfield redevelopment site: The case of Shenyang. Ecol. Eng. 2013, 53, 115–119. [Google Scholar] [CrossRef]
- Lin, D.; Hanscom, L.; Murthy, A.; Galli, A.; Evans, M.; Neill, E.; Mancini, M.S.; Martindill, J.; Medouar, F.-Z.; Huang, S.; et al. Ecological footprint accounting for countries: Updates and results of the National Footprint Accounts, 2012–2018. Resources 2018, 7, 58. [Google Scholar] [CrossRef]
- Rees, W.E. Ecological footprints and appropriated carrying capacity: What urban economics leaves out. Environ. Urban. 1992, 4, 121–130. [Google Scholar] [CrossRef]
- Rees, W.; Wackernagel, M. Urban ecological footprints: Why cities cannot be sustainable—And why they are a key to sustainability. Environ. Impact Assess. Rev. 1996, 16, 223–248. [Google Scholar] [CrossRef]
- Geng, Y.; Côté, R.; Tsuyoshi, F. A quantitative water resource planning and management model for an industrial park level. Reg. Environ. Change 2007, 7, 123–135. [Google Scholar] [CrossRef]
- Özokcu, S.; Özdemir, Ö. Economic growth, energy, and environmental Kuznets curve. Renew. Sustain. Energy Rev. 2017, 72, 639–647. [Google Scholar] [CrossRef]
- Hashmi, R.; Alam, K. Dynamic relationship among environmental regulation, innovation, CO2 emissions, population, and economic growth in OECD countries: A panel investigation. J. Clean. Prod. 2019, 231, 1100–1109. [Google Scholar] [CrossRef]
- Magazzino, C.; Mele, M.; Schneider, N.; Shahbaz, M. Can biomass energy curtail environmental pollution? A quantum model approach to Germany. J. Environ. Manag. 2021, 287, 112293. [Google Scholar] [CrossRef]
- Ahmed, Z.; Le, H.P.; Shahzad, S.J.H. Toward environmental sustainability: How do urbanization, economic growth, and industrialization affect biocapacity in Brazil? Environ. Dev. Sustain. 2021, 24, 11676–11696. [Google Scholar] [CrossRef]
- Jia, C. Environmental Tax to Help China Fight Pollution. 2018. Available online: http://www.chinadaily.com.cn/a/201801/11/WS5a5699b7a3102e5b173740b4.html (accessed on 10 February 2025).
- Shahzad, U. Environmental taxes, energy consumption, and environmental quality: Theoretical survey with policy implications. Environ. Sci. Pollut. Res. 2020, 27, 24848–24862. [Google Scholar] [CrossRef]
- Lee, M.; Park, D.; Saunders, H. Asia’s Energy Adequacy, Environmental Sustainability, and Affordability: An Overview; Asian Development Bank: Mandaluyong, Philippines, 2014. [Google Scholar]
- Arimura, T.H.; Sugino, M. Energy-related environmental policy and its impacts on energy use in Asia. Asian Econ. Policy Rev. 2021, 16, 44–61. [Google Scholar] [CrossRef]
- Cheng, C.; Ren, X.; Dong, K.; Dong, X.; Wang, Z. How does technological innovation mitigate CO2 emissions in OECD countries? Heterogeneous analysis using panel quantile regression. J. Environ. Manag. 2021, 280, 111818. [Google Scholar] [CrossRef] [PubMed]
- Shahbaz, M.; Raghutla, C.; Song, M.; Zameer, H.; Jiao, Z. Public-private partnerships investment in energy as new determinant of CO2 emissions: The role of technological innovations in China. Energy Econ. 2020, 86, 104664. [Google Scholar] [CrossRef]
- Zhao, J.; Shahbaz, M.; Dong, X.; Dong, K. How does financial risk affect global CO2 emissions? The role of technological innovation. Technol. Forecast. Soc. Change 2021, 168, 120751. [Google Scholar] [CrossRef]
- Akram, R.; Chen, F.; Khalid, F.; Ye, Z.; Majeed, M.T. Heterogeneous effects of energy efficiency and renewable energy on carbon emissions: Evidence from developing countries. J. Clean. Prod. 2020, 247, 119122. [Google Scholar] [CrossRef]
- Balsalobre-Lorente, D.; Shahbaz, M.; Jabbour, C.J.C.; Driha, O.M. The role of energy innovation and corruption in carbon emissions: Evidence based on the EKC hypothesis. In Energy and Environmental Strategies in the Era of Globalization; Springer: Cham, Switzerland, 2019; pp. 271–304. [Google Scholar]
- Schneider, N. Renewable energy, energy efficiency, and CO2 emissions in developing countries: Evidence from the Pesaran (2006) common correlated effects model. SSRN Electron. J. 2020, 1–48. [Google Scholar] [CrossRef]
- Kaika, D.; Zervas, E. The Environmental Kuznets Curve (EKC) theory—Part A: Concept, causes and the CO2 emissions case. Energy Policy 2013, 62, 1392–1402. [Google Scholar] [CrossRef]
- Stern, D.I. The rise and fall of the environmental Kuznets curve. World Dev. 2004, 32, 1419–1439. [Google Scholar] [CrossRef]
- Fei, L.; Dong, S.; Xue, L.; Liang, Q.; Yang, W. Energy consumption-economic growth relationship and carbon dioxide emissions in China. Energy Policy 2011, 39, 568–574. [Google Scholar] [CrossRef]
- Zhang, S.; Shi, Q.; Cheng, M. Renewable natural capital, the biocapacity, and subjective well-being. J. Clean. Prod. 2017, 150, 277–286. [Google Scholar] [CrossRef]
- Chen, S.; Saud, S.; Saleem, N.; Bari, M.W. Nexus between financial development, energy consumption, income level, and ecological footprint in CEE countries: Do human capital and biocapacity matter? Environ. Sci. Pollut. Res. 2019, 26, 31856–31872. [Google Scholar]
- Pathak, S. Ecological footprints of war: An exploratory assessment of the long-term impact of violent conflicts on national biocapacity from 1962–2009. J. Environ. Stud. Sci. 2020, 10, 380–393. [Google Scholar] [CrossRef]
- Rahman, M.M.; Khan, Z.; Khan, S.; Abbas, S. Disaggregated energy consumption, industrialization, total population, and ecological footprint nexus: Evidence from the world’s top 10 most populous countries. Environ. Sci. Pollut. Res. 2023, 30, 119069–119083. [Google Scholar] [CrossRef]
- Sharif, A.; Baris-Tuzemen, O.; Uzuner, G.; Ozturk, I.; Sinha, A. Revisiting the role of renewable and non-renewable energy consumption on Turkey’s ecological footprint: Evidence from Quantile ARDL approach. Sustain. Cities Soc. 2020, 57, 102138. [Google Scholar] [CrossRef]
- Brooks, C. Linear and non-linear (non-) forecastability of high-frequency exchange rates. J. Forecast. 1997, 16, 125–145. [Google Scholar] [CrossRef]
- Zivot, E.; Andrews, D.W.K. Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis. J. Bus. Econ. Stat. 2002, 20, 25–44. [Google Scholar] [CrossRef]
- Cho, J.S.; Kim, T.H.; Shin, Y. Quantile cointegration in the autoregressive distributed-lag modeling framework. J. Econom. 2015, 188, 281–300. [Google Scholar] [CrossRef]
- Troster, V. Testing for Granger-causality in quantiles. Econom. Rev. 2018, 37, 850–866. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Environmental Impacts of a North American Free Trade Agreement. National Bureau of Economic Research (NBER) Working Paper; No. w3914. 1991. Available online: https://www.nber.org/papers/w3914 (accessed on 8 January 2025).
- Shafik, N.; Bandyopadhyay, S. Economic growth and environmental quality: Time series and cross section evidence. In Policy Research Working Paper Nº WPS904; World Bank: Washington, DC, USA, 1992. [Google Scholar]
- Panayotou, T. Empirical Tests and Policy Analysis of Environmental Degradation at Different Stages of Economic Development; No. 992927783402676; International Labour Organization: Geneva, Switzerland, 1993. [Google Scholar]
- Selden, T.M.; Song, D. Environmental quality and development: Is there a Kuznets curve for air pollution emissions? J. Environ. Econ. Manag. 1994, 27, 147–162. [Google Scholar] [CrossRef]
- Dijkgraaf, E.; Vollebergh, H.R. A test for parameter homogeneity in CO2 panel EKC estimations. Environ. Resour. Econ. 2005, 32, 229–239. [Google Scholar] [CrossRef]
- Sarkodie, S.A. The invisible hand and EKC hypothesis: What are the drivers of environmental degradation and pollution in Africa? Environ. Sci. Pollut. Res. 2018, 25, 21993–22022. [Google Scholar] [CrossRef]
- Ben Jebli, M.; Ben Youssef, S.; Ozturk, I. The Environmental Kuznets Curve: The Role of Renewable and Non-Renewable Energy Consumption and Trade Openness; University Library of Munich: Munich, Germany, 2013. [Google Scholar]
- Bilgili, F.; Koçak, E.; Bulut, U. The dynamic impact of renewable energy consumption on CO2 emissions: A revisited Environmental Kuznets Curve approach. Renew. Sustain. Energy Rev. 2016, 54, 838–845. [Google Scholar] [CrossRef]
- Iwata, H.; Okada, K.; Samreth, S. Empirical study on the determinants of CO2 emissions: Evidence from OECD countries. Appl. Econ. 2012, 44, 3513–3519. [Google Scholar] [CrossRef]
- Le, D.N. Environmental degradation and economic growth in ASEAN-10: The perspective of EKC hypothesis. Malays. J. Econ. Stud. 2019, 56, 43–62. [Google Scholar] [CrossRef]
- Adeel-Farooq, R.M.; Bakar, N.A.A.; Raji, J.O. Financial sector development and economic growth: A co-integration analysis for ASEAN countries. Int. J. Econ. Policy Emerg. Econ. 2020, 13, 195–208. [Google Scholar]
- Leal, P.H.; Marques, A.C. Rediscovering the EKC hypothesis for the 20 highest CO2 emitters among OECD countries by level of globalization. Int. Econ. 2020, 164, 36–47. [Google Scholar] [CrossRef]
- York, R.; Rosa, E.A.; Dietz, T. Footprints on the earth: The environmental consequences of modernity. Am. Sociol. Rev. 2003, 68, 279–300. [Google Scholar] [CrossRef]
- Moutinho, V.; Madaleno, M.; Elheddad, M. Determinants of the Environmental Kuznets Curve considering economic activity sector diversification in the OPEC countries. J. Clean. Prod. 2020, 271, 122642. [Google Scholar] [CrossRef]
- Moomaw, W.R.; Unruh, G.C. Are environmental Kuznets curves misleading us? The case of CO2 emissions. Environ. Dev. Econ. 1997, 2, 451–463. [Google Scholar] [CrossRef]
- Agras, J.; Chapman, D. A dynamic approach to the Environmental Kuznets Curve hypothesis. Ecol. Econ. 1999, 28, 267–277. [Google Scholar] [CrossRef]
- Heidari, H.; Katircioğlu, S.T.; Saeidpour, L. Economic growth, CO2 emissions, and energy consumption in the five ASEAN countries. Int. J. Electr. Power Energy Syst. 2015, 64, 785–791. [Google Scholar] [CrossRef]
- Pata, U.K.; Aydin, M. Testing the EKC hypothesis for the top six hydropower energy-consuming countries: Evidence from Fourier Bootstrap ARDL procedure. J. Clean. Prod. 2020, 264, 121699. [Google Scholar] [CrossRef]
- Mehmood, U. Biomass energy consumption and its impacts on ecological footprints: Analyzing the role of globalization and natural resources in the framework of EKC in SAARC countries. Environ. Sci. Pollut. Res. 2021, 29, 17513–17519. [Google Scholar] [CrossRef]
- Lee, C.C.; Chiu, Y.B.; Sun, C.H. The environmental Kuznets curve hypothesis for water pollution: Do regions matter? Energy Policy 2010, 38, 12–23. [Google Scholar] [CrossRef]
- Jalil, A.; Mahmud, S.F. Environment Kuznets curve for CO2 emissions: A cointegration analysis for China. Energy Policy 2009, 37, 5167–5172. [Google Scholar] [CrossRef]
- Shahbaz, M.; Khraief, N.; Uddin, G.S.; Ozturk, I. Environmental Kuznets curve in an open economy: A bounds testing and causality analysis for Tunisia. Renew. Sustain. Energy Rev. 2014, 34, 325–336. [Google Scholar] [CrossRef]
- Fodha, M.; Zaghdoud, O. Economic growth and pollutant emissions in Tunisia: An empirical analysis of the environmental Kuznets curve. Energy Policy 2010, 38, 1150–1156. [Google Scholar] [CrossRef]
- Baek, J.; Kim, H.S. Is economic growth good or bad for the environment? Empirical evidence from Korea. Energy Econ. 2013, 36, 744–749. [Google Scholar] [CrossRef]
- Pata, U.K. Renewable energy consumption, urbanization, financial development, income and CO2 emissions in Turkey: Testing EKC hypothesis with structural breaks. J. Clean. Prod. 2018, 187, 770–779. [Google Scholar] [CrossRef]
- Rana, R.; Sharma, M. Dynamic causality testing for EKC hypothesis, pollution haven hypothesis and international trade in India. J. Int. Trade Econ. Dev. 2019, 28, 348–364. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Ozturk, I. Investigating the environmental Kuznets curve hypothesis in Kenya: A multivariate analysis. Renew. Sustain. Energy Rev. 2020, 117, 109481. [Google Scholar] [CrossRef]
- Soytas, U.; Sari, R.; Ewing, B.T. Energy consumption, income, and carbon emissions in the United States. Ecol. Econ. 2007, 62, 482–489. [Google Scholar] [CrossRef]
- Wang, S.; Li, Q.; Fang, C.; Zhou, C. The relationship between economic growth, energy consumption, and CO2 emissions: Empirical evidence from China. Sci. Total Environ. 2016, 542, 360–371. [Google Scholar] [CrossRef]
- Fei, Q.; Rasiah, R.; Shen, L.J. The clean energy-growth nexus with CO2 emissions and technological innovation in Norway and New Zealand. Energy Environ. 2014, 25, 1323–1344. [Google Scholar] [CrossRef]
- Minlah, M.K.; Zhang, X. Testing for the existence of the Environmental Kuznets Curve (EKC) for CO2 emissions in Ghana: Evidence from the bootstrap rolling window Granger causality test. Environ. Sci. Pollut. Res. 2021, 28, 2119–2131. [Google Scholar] [CrossRef]
- Ozturk, I.; Al-Mulali, U.; Saboori, B. Investigating the environmental Kuznets curve hypothesis: The role of tourism and ecological footprint. Environ. Sci. Pollut. Res. 2016, 23, 1916–1928. [Google Scholar] [CrossRef]
- Al-Mulali, U.; Saboori, B.; Ozturk, I. Investigating the environmental Kuznets curve hypothesis in Vietnam. Energy Policy 2015, 76, 123–131. [Google Scholar] [CrossRef]
- Ulucak, R.; Bilgili, F. A reinvestigation of EKC model by ecological footprint measurement for high, middle and low income countries. J. Clean. Prod. 2018, 188, 144–157. [Google Scholar] [CrossRef]
- Koc, S.; Bulus, G.C. Testing validity of the EKC hypothesis in South Korea: Role of renewable energy and trade openness. Environ. Sci. Pollut. Res. 2020, 27, 29043–29054. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Mirza, N.; Vasbieva, D.G.; Abbas, Q.; Xiong, D. The nexus of carbon emissions, financial development, renewable energy consumption, and technological innovation: What should be the priorities in light of COP 21 Agreements? J. Environ. Manag. 2020, 271, 111027. [Google Scholar] [CrossRef]
- Magazzino, C.; Mele, M.; Schneider, N. Assessing a fossil fuels externality with a new neural networks and image optimisation algorithm: The case of atmospheric pollutants as confounders to COVID-19 lethality. Epidemiol. Infect. 2022, 150, e1. [Google Scholar] [CrossRef] [PubMed]
- Schumpeter, J. Capitalism, Socialism and Democracy New York. 1942. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1496200 (accessed on 18 January 2025).
- Balsalobre-Lorente, D.; Shahbaz, M.; Roubaud, D.; Farhani, S. How economic growth, renewable electricity and natural resources contribute to CO2 emissions? Energy Policy 2018, 113, 356–367. [Google Scholar] [CrossRef]
- Torras, M.; Boyce, J.K. Income, inequality, and pollution: A reassessment of the environmental Kuznets curve. Ecol. Econ. 1998, 25, 147–160. [Google Scholar] [CrossRef]
- Arrow, K.; Bolin, B.; Costanza, R.; Dasgupta, P.; Folke, C.; Holling, C.S.; Jansson, B.O.; Levin, S.; Mäler, K.G.; Perrings, C.; et al. Economic growth, carrying capacity, and the environment. Ecol. Econ. 1995, 15, 91–95. [Google Scholar] [CrossRef]
- Ahmed, A.; Uddin, G.S.; Sohag, K. Biomass energy, technological progress and the environmental Kuznets curve: Evidence from selected European countries. Biomass Bioenergy 2016, 90, 202–208. [Google Scholar] [CrossRef]
- Qayyum, M.; Ali, M.; Nizamani, M.M.; Li, S.; Yu, Y.; Jahanger, A. Nexus between Financial Development, Renewable Energy Consumption, Technological Innovations and CO2 Emissions: The Case of India. Energies 2021, 14, 4505. [Google Scholar] [CrossRef]
- Alvarez-Herranz, A.; Balsalobre-Lorente, D.; Shahbaz, M.; Cantos, J.M. Energy innovation and renewable energy consumption in the correction of air pollution levels. Energy Policy 2017, 105, 386–397. [Google Scholar] [CrossRef]
- Lorente, D.B.; Álvarez-Herranz, A. Economic growth and energy regulation in the environmental Kuznets curve. Environ. Sci. Pollut. Res. 2016, 23, 16478–16494. [Google Scholar] [CrossRef]
- Chen, Y.; Lee, C.C. Does technological innovation reduce CO2 emissions? Cross-country evidence. J. Clean. Prod. 2020, 263, 121550. [Google Scholar] [CrossRef]
- Yu, Y.; Du, Y. Impact of technological innovation on CO2 emissions and emissions trend prediction on ‘New Normal’ economy in China. Atmos. Pollut. Res. 2019, 10, 152–161. [Google Scholar] [CrossRef]
- Churchill, S.A.; Inekwe, J.; Smyth, R.; Zhang, X. R&D intensity and carbon emissions in the G7: 1870–2014. Energy Econ. 2019, 80, 30–37. [Google Scholar]
- Lin, B.; Zhu, J. Determinants of renewable energy technological innovation in China under CO2 emissions constraint. J. Environ. Manag. 2019, 247, 662–671. [Google Scholar] [CrossRef]
- Shahbaz, M.; Raghutla, C.; Chittedi, K.R.; Jiao, Z.; Vo, X.V. The effect of renewable energy consumption on economic growth: Evidence from the renewable energy country attractive index. Energy 2020, 207, 118162. [Google Scholar] [CrossRef]
- Çalışkan, H.K. Technological change and economic growth. Procedia-Soc. Behav. Sci. 2015, 195, 649–654. [Google Scholar] [CrossRef]
- Rafique, M.Z.; Fareed, Z.; Ferraz, D.; Ikram, M.; Huang, S. Exploring the heterogenous impacts of environmental taxes on environmental footprints: An empirical assessment from developed economies. Energy 2022, 238, 121753. [Google Scholar] [CrossRef]
- Hassan, S.T.; Baloch, M.A.; Mahmood, N.; Zhang, J. Linking economic growth and ecological footprint through human capital and biocapacity. Sustain. Cities Soc. 2019, 47, 101516. [Google Scholar]
- Ali, A.; Usman, M.; Usman, O.; Sarkodie, S.A. Modeling the effects of agricultural innovation and biocapacity on carbon dioxide emissions in an agrarian-based economy: Evidence from the dynamic ARDL simulations. Front. Energy Res. 2021, 8, 381. [Google Scholar] [CrossRef]
- Woodall, B. Japan: Paragon of Energy Efficiency, Green Growth Laggard. In Can Green Sustain Growth? Stanford University Press: Redwood City, CA, USA, 2020; pp. 150–169. [Google Scholar]
- Grassberger, P.; Procaccia, I. Measuring the strangeness of strange attractors. Phys. D Nonlinear Phenomena 1983, 9, 189–208. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Bounds testing approaches to the analysis of level relationships. J. Appl. Econom. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Xiao, Z. Quantile cointegrating regression. J. Econom. 2009, 150, 248–260. [Google Scholar] [CrossRef]
- Wald, A. Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans. Am. Math. Soc. 1943, 54, 426–482. [Google Scholar] [CrossRef]
- Granger, C.W. Investigating causal relations by econometric models and cross-spectral methods. Econom. J. Econom. Soc. 1969, 37, 424–438. [Google Scholar] [CrossRef]
- Dickey, D.A.; Fuller, W.A. Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 1979, 74, 427–431. [Google Scholar]
- Herbert, R.D.; Leeves, G. Troubles in wonderland. Complex. Int. 1999, 6, 258–271. [Google Scholar]
- Lucas, R.E.J. Econometric policy evaluation: A critique. In The Phillips Curve and Labor Markets; Brunner, K., Meltzer, A.H., Eds.; Elsevier: Amsterdam, The Netherlands, 1976; Available online: https://people.sabanciuniv.edu/atilgan/FE500_Fall2013/2Nov2013_CevdetAkcay/LucasCritique_1976.pdf (accessed on 18 January 2025).
- Bekiros, S. Forecasting with a state space time-varying parameter VAR model: Evidence from the Euro area. Econ. Model. 2014, 38, 619–626. [Google Scholar] [CrossRef]
- Cumming, G.S.; von Cramon-Taubadel, S. Linking economic growth pathways and environmental sustainability by understanding development as alternate social–ecological regimes. Proc. Natl. Acad. Sci. USA 2018, 115, 9533–9538. [Google Scholar] [CrossRef]
- Geng, Y.; Zhang, L.; Chen, X.; Xue, B.; Fujita, T.; Dong, H. Urban ecological footprint analysis: A comparative study between Shenyang in China and Kawasaki in Japan. J. Clean. Prod. 2014, 75, 130–142. [Google Scholar] [CrossRef]
- Glynn, J.; Perera, N.; Verma, R. Unit root tests and structural breaks: A survey with applications. J. Quant. Methods Econ. Bus. Adm. 2007, 3, 63–79. [Google Scholar]
- Moran, D.D.; Wackernagel, M.; Kitzes, J.A.; Goldfinger, S.H.; Boutaud, A. Measuring sustainable development—Nation by nation. Ecol. Econ. 2008, 64, 470–474. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Adams, S.; Owusu, P.A.; Leirvik, T.; Ozturk, I. Mitigating degradation and emissions in China: The role of environmental sustainability, human capital and renewable energy. Sci. Total Environ. 2020, 719, 137530. [Google Scholar] [CrossRef] [PubMed]
- Wackernagel, M.; Hanscom, L.; Jayasinghe, P.; Lin, D.; Murthy, A.; Neill, E.; Raven, P. The importance of resource security for poverty eradication. Nat. Sustain. 2021, 4, 731–738. [Google Scholar] [CrossRef]
- Wen, Q.; Chen, Y.; Hong, J.; Chen, Y.; Ni, D.; Shen, Q. Spillover effect of technological innovation on CO2 emissions in China’s construction industry. Build. Environ. 2020, 171, 106653. [Google Scholar] [CrossRef]
Dimension | m = 2 | m = 3 | m = 4 | m = 5 | m = 6 |
---|---|---|---|---|---|
Biocapacity | 0.030 * | 0.056 ** | 0.073 ** | 0.074 ** | 0.059 * |
Efficiency | 0.065 *** | 0.078 *** | 0.065 *** | 0.097 *** | 0.087 *** |
Taxes | 0.043 * | 0.079 *** | 0.094 *** | 0.090 *** | 0.046 * |
Stability | 0.020 * | 0.063 *** | 0.075 *** | 0.093 *** | 0.092 *** |
GDP | 0.679 *** | 0.960 *** | 0.590 ** | 0.734 *** | 0.744 *** |
Variable | Biocapacity | Efficiency | Taxes | Stability | GDP |
---|---|---|---|---|---|
ADF (Level) | −3.537 * | −2.948 * | −1.949 | −3.054 * | −1.698 |
ADF (Δ) | −5.663 *** | −4.367 | −6.370 *** | −6.911 *** | −5.746 *** |
ZA (Level) | −3.845 * | −4.087 ** | −3.117 | −4.911 *** | −1.482 |
Breaking point (year) | 2001 | 2015 | 2005 | 2018 | 2021 |
ZA (Δ) | −12.398 *** | −5.146 *** | −7.890 *** | −7.648 *** | −7.389 *** |
Breaking point (year) | 2004 | 2003 | 2020 | 2020 | 2009 |
Quantiles | p-Value for Harvey–Collier Test | Intercept | Error Correction Term | Long-Run | Short-Run | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
α | ρ | βefficiency | βtaxes | βstability | βGDP | φ1 (Biocapacity) | ω0 (Efficiency) | λ0 (Taxes) | θ0 (Stability) | δ0 (GDP) | ||
0.05 | 0.134 | 1.334 * | −0.330 *** | 0.077 ** | 0.039 ** | 0.047 * | −1.564 *** | 0.728 *** | 0.022 * | 0.021 | 0.077 | −0.613 *** |
0.10 | 0.176 | 1.439 * | −0.323 *** | 0.081 ** | 0.037 ** | 0.084 ** | −1.322 *** | 0.655 *** | 0.040 * | 0.024 | 0.184 | −0.605 *** |
0.20 | 0.113 | 0.984 | −0.315 ** | 0.093 ** | 0.082 *** | 0.091 ** | −1.118 *** | 0.486 *** | 0.033 * | 0.058 ** | 0.233 * | −0.579 ** |
0.30 | 0.204 | 0.943 | −0.303 ** | 0.099 *** | 0.090 *** | 0.108 *** | −1.144 *** | 0.704 *** | 0.041 * | 0.049 ** | 0.194 ** | −0.533 ** |
0.40 | 0.174 | 0.691 | −0.256 * | 0.102 ** | 0.081 *** | 0.121 *** | −0.899 *** | 0.685 *** | 0.034 | 0.066 ** | 0.336 ** | −0.422 ** |
0.50 | 0.296 | 0.993 * | −0.182 | 0.053 | 0.083 ** | 0.011 | −0.763 ** | 0.506 *** | 0.014 | 0.051 * | 0.395 ** | −0.417 ** |
0.60 | 0.332 | 1.117 ** | −0.165 | 0.059 | −0.029 * | 0.033 | −0.722 *** | 0.500 *** | 0.021 | 0.038 | 0.322 ** | −0.367 ** |
0.70 | 0.275 | 1.255 ** | −0.140 | 0.041 | −0.022 * | 0.031 | −0.617 ** | 0.598 *** | 0.028 | 0.011 | 0.259 * | −0.258 * |
0.80 | 0.406 | 1.367 ** | −0.176 ** | 0.058 | −0.015 | 0.056 * | −0.502 ** | 0.636 *** | 0.022 | 0.013 | 0.268 * | −0.139 |
0.90 | 0.385 | 1.445 ** | −0.199 ** | −0.021 | −0.011 | 0.029 * | −0.419 ** | 0.755 *** | 0.031 | 0.012 | 0.119 | −0.144 |
0.95 | 0.274 | 1.494 ** | −0.221 ** | −0.026 | −0.010 | 0.014 | −0.295 ** | 0.725 *** | 0.016 | 0.019 | 0.075 | −0.166 |
Parameters | Wald Statistics |
---|---|
Long-term Parameters | |
ρ | 8.115 *** |
βefficiency | 6.557 *** |
βtaxes | 5.156 *** |
βstability | 5.987 *** |
βGDP | 4.543 *** |
Short-term Parameters | |
φ1 | 5.886 *** |
ω0 | 3.237 *** |
λ0 | 2.045 ** |
θ0 | 2.103 ** |
δ0 | 2.778 ** |
Quantiles | [0.05–0.95] | 0.05 | 0.10 | 0.20 | 0.30 | 0.40 | 0.50 | 0.60 | 0.70 | 0.80 | 0.90 | 0.95 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ΔEfficiencyt to Biocapacityt | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
ΔBiocapacityt to ΔEfficiencyt | 0.411 | 0.420 | 0.423 | 0.354 | 0.399 | 0.433 | 0.450 | 0.438 | 0.453 | 0.423 | 0.456 | 0.422 |
ΔTaxest to Biocapacityt | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.319 | 0.309 | 0.328 | 0.375 |
ΔBiocapacityt to ΔTaxest | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.565 | 0.566 | 0.528 | 0.598 | 0.565 |
ΔStabilityt to Biocapacityt | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
ΔBiocapacityt to ΔStabilityt | 0.933 | 0.904 | 0.888 | 0.888 | 0.772 | 0.716 | 0.694 | 0.669 | 0.683 | 0.683 | 0.714 | 0.856 |
ΔGDPt to Biocapacityt | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
ΔBiocapacityt to ΔGDPt | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simionescu, M. The Impact of Energy Efficiency Technologies, Political Stability and Environmental Taxes on Biocapacity in the USA. Energies 2025, 18, 2180. https://doi.org/10.3390/en18092180
Simionescu M. The Impact of Energy Efficiency Technologies, Political Stability and Environmental Taxes on Biocapacity in the USA. Energies. 2025; 18(9):2180. https://doi.org/10.3390/en18092180
Chicago/Turabian StyleSimionescu, Mihaela. 2025. "The Impact of Energy Efficiency Technologies, Political Stability and Environmental Taxes on Biocapacity in the USA" Energies 18, no. 9: 2180. https://doi.org/10.3390/en18092180
APA StyleSimionescu, M. (2025). The Impact of Energy Efficiency Technologies, Political Stability and Environmental Taxes on Biocapacity in the USA. Energies, 18(9), 2180. https://doi.org/10.3390/en18092180