How Does Critical Peak Pricing Boost Urban Green Total Factor Energy Efficiency? Evidence from a Double Machine Learning Model
Abstract
1. Introduction
2. Literature Review
3. Theoretical Analysis and Research Hypotheses
4. Research Design
4.1. Model Design
4.2. Variable Description
4.2.1. Explained Variable
4.2.2. Explanatory Variable
4.2.3. Control Variables
4.3. Data Sources
5. Empirical Result
5.1. Benchmark Regression Results
5.2. Robustness Test
5.2.1. Replace the Algorithm Selection
5.2.2. Adjust the K-Fold Cross-Validation
5.2.3. Change the Year Setting for Implementing the Policy
5.2.4. Consider the Interaction Fixed Effect
5.2.5. Eliminate Policy Interference from Resource-Based Cities
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Replace the Algorithm Selection | Adjust the K-Fold Cross-Validation | Change the Year Setting for Implementing the Policy | Consider the Interaction Fixed Effect | Eliminate the Resource-Based Cities Policy Interference | |
0.038 *** | 0.022 *** | 0.024 ** | 0.033 *** | 0.026 *** | |
(0.004) | (0.006) | (0.010) | (0.005) | (0.005) | |
Controls | √ | √ | √ | √ | √ |
Firm FE | √ | √ | √ | √ | √ |
Year FE | √ | √ | √ | √ | √ |
Firm*Year FE | ✕ | ✕ | ✕ | √ | ✕ |
Observation | 2111 | 2111 | 2111 | 2111 | 2111 |
5.3. Endogeneity Test
5.3.1. Instrumental Variable Test
5.3.2. Replace the DID Estimation Model
(1) | (2) | |
---|---|---|
IV | DID | |
0.109 *** | 0.019 ** | |
(0.026) | (0.009) | |
Controls | √ | √ |
Firm FE | √ | √ |
Year FE | √ | √ |
Firm*Year FE | ✕ | ✕ |
Observation | 2111 | 2111 |
5.4. Impact Channel: Market Expansion and Technological Innovation Channels
5.4.1. Market Expansion Channel
5.4.2. Technological Innovation Channel
5.5. Heterogeneity Analysis
5.5.1. Heterogeneity Related to the Resource Endowment Effect
5.5.2. Heterogeneity in Government Administrative Power
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Non-Resource-Based Cities | Resource-Based Cities | Provincial Capital Cities | Non-Provincial Capital Cities | |
0.023 *** | 0.016 | 0.039 *** | 0.013 * | |
(0.006) | (0.010) | (0.012) | (0.007) | |
Controls | √ | √ | √ | √ |
Firm FE | √ | √ | √ | √ |
Year FE | √ | √ | √ | √ |
Observation | 893 | 1218 | 312 | 1799 |
5.5.3. Heterogeneity Related to Regional Development Effects
6. Conclusions and Policy Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, H.; Wang, J.; Hou, J.; Yu, B.; Pan, Y. The effect of economic growth pressure on green technology innovation: Do environmental regulation, government support, and financial development matter? J. Environ. Manag. 2023, 330, 117172. [Google Scholar] [CrossRef]
- Gao, D.; Cai, J.; Wu, K. The smart green tide: A bibliometric analysis of AI and renewable energy transition. Energy Rep. 2025, 13, 5290–5304. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, B.; Cui, L. Applauded not acclaimed? Implementation effectiveness of the tradable green certificate in renewable energy policy of China. Energy Econ. 2025, 145, 108504. [Google Scholar] [CrossRef]
- Han, J.; Zhang, W.; Liu, X.; Muhammad, A.; Li, Z.; Isik, C. Climate policy uncertainty and green total factor energy efficiency: Does the green finance matter? Int. Rev. Financ. Anal. 2025, 104, 104293. [Google Scholar] [CrossRef]
- Li, W.; Fan, Z.; Yao, D. The impact of industrial robot on green total factor energy efficiency under the “resource curse” perspective: Evidence from cities in China. J. Environ. Manag. 2025, 385, 125641. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.Y.; Wang, K.L.; Miao, Z. The impact of digital technology innovation on green total-factor energy efficiency in China: Does economic development matter? Energy Policy 2024, 194, 114342. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, H.; Feng, T.; Chen, Y. Efficient demand response location targeting for price spike mitigation by exploiting price-demand relationship. Appl. Energy 2024, 376, 124141. [Google Scholar] [CrossRef]
- Jiang, Y.; Guo, Y.; Bashir, M.F.; Shahbaz, M. Do renewable energy, environmental regulations and green innovation matter for China’s zero carbon transition: Evidence from green total factor productivity. J. Environ. Manag. 2024, 352, 120030. [Google Scholar] [CrossRef]
- Du, J.; Shen, Z.; Song, M.; Vardanyan, M. The role of green financing in facilitating renewable energy transition in China: Perspectives from energy governance, environmental regulation, and market reforms. Energy Econ. 2023, 120, 106595. [Google Scholar] [CrossRef]
- Gao, D.; Mo, X.; Xiong, R.; Huang, Z. Tax policy and total factor carbon emission efficiency: Evidence from China’s VAT reform. Int. J. Environ. Res. Public Health 2022, 19, 9257. [Google Scholar] [CrossRef]
- Guo, B.; Weeks, M. Dynamic tariffs, demand response, and regulation in retail electricity markets. Energy Econ. 2022, 106, 105774. [Google Scholar] [CrossRef]
- Mao, X.; Chen, S.; Yu, H.; Duan, L.; He, Y.; Chu, Y. Simplicity in dynamic and competitive electricity markets: A case study on enhanced linear models versus complex deep-learning models for day-ahead electricity price forecasting. Appl. Energy 2025, 383, 125201. [Google Scholar] [CrossRef]
- Schledorn, A.; Charousset-Brignol, S.; Junker, R.G.; Guericke, D.; Madsen, H.; Dominković, D.F. Frigg 2.0: Integrating price-based demand response into large-scale energy system analysis. Appl. Energy 2024, 364, 122960. [Google Scholar] [CrossRef]
- Fabra, N. Reforming European electricity markets: Lessons from the energy crisis. Energy Econ. 2023, 126, 106963. [Google Scholar] [CrossRef]
- Wang, J.; Qiu, D.; Wang, Y.; Ye, Y.; Strbac, G. Investigating the impact of demand-side flexibility on market-driven generation planning toward a fully decarbonized power system. Energy 2025, 324, 135692. [Google Scholar] [CrossRef]
- Boampong, R.; Brown, D.P. On the benefits of behind-the-meter rooftop solar and energy storage: The importance of retail rate design. Energy Econ. 2020, 86, 104682. [Google Scholar] [CrossRef]
- Hong, Q.; Cui, L.; Hong, P. The impact of carbon emissions trading on energy efficiency: Evidence from quasi-experiment in China’s carbon emissions trading pilot. Energy Econ. 2022, 110, 106025. [Google Scholar] [CrossRef]
- Faruqui, A.; Sergici, S.; Warner, C. Arcturus 2.0: A meta-analysis of time-varying rates for electricity. Electr. J. 2017, 30, 64–72. [Google Scholar] [CrossRef]
- Rangarajan, A.; Foley, S.; Trück, S. Assessing the impact of battery storage on Australian electricity markets. Energy Econ. 2023, 120, 106601. [Google Scholar] [CrossRef]
- Gao, D.; Tan, L.; Chen, Y. Unlocking carbon reduction potential of digital trade: Evidence from China’s comprehensive cross-border e-commerce pilot zones. Sage Open 2025, 15, 1–16. [Google Scholar] [CrossRef]
- Wang, K.; Zhong, C.; Yu, R. The greenhouse gas reduction effect of critical peak pricing for industrial electricity: Evidence from 285 Chinese cities, 2003–2019. Energy Policy 2024, 190, 114147. [Google Scholar] [CrossRef]
- Herter, K.; McAuliffe, P.; Rosenfeld, A. An exploratory analysis of California residential customer response to critical peak pricing of electricity. Energy 2007, 32, 25–34. [Google Scholar] [CrossRef]
- Pelletier, F.; Faruqui, A. Does dynamic pricing work in a winter-peaking climate? A case study of Hydro Quebec. Electr. J. 2022, 35, 107080. [Google Scholar] [CrossRef]
- Furió Ortega, M.D.; Moreno del Castillo, J. Dynamic demand response to electricity prices: Evidence from the Spanish retail market. Util. Policy 2024, 88, 101763. [Google Scholar] [CrossRef]
- Yu, X.; Dong, Z.; Zheng, D.; Deng, S. Analysis of critical peak electricity price optimization model considering coal consumption rate of power generation side. Environ. Sci. Pollut. Res. 2024, 31, 41514–41528. [Google Scholar] [CrossRef]
- Singh, A.R.; Dey, B.; Bajaj, M.; Kadiwala, S.; Kumar, R.S.; Dutta, S.; Zaitsev, I. Advanced microgrid optimization using price-elastic demand response and greedy rat swarm optimization for economic and environmental efficiency. Sci. Rep. 2025, 15, 2261. [Google Scholar] [CrossRef] [PubMed]
- Mateen, A.; Wasim, M.; Ahad, A.; Ashfaq, T.; Iqbal, M.; Ali, A. Smart energy management system for minimizing electricity cost and peak to average ratio in residential areas with hybrid genetic flower pollination algorithm. Alex. Eng. J. 2023, 77, 593–611. [Google Scholar] [CrossRef]
- Li, L.; Qiu, J.; Fang, G. The effect of electricity time-of-use plans: Evidence from the industrial sector in China. China Econ. Rev. 2025, 91, 102390. [Google Scholar] [CrossRef]
- Guo, Z.; Xu, W.; Yan, Y.; Sun, M. How to realize the power demand side actively matching the supply side?—A virtual real-time electricity prices optimization model based on credit mechanism. Appl. Energy 2023, 343, 121223. [Google Scholar] [CrossRef]
- Cabot, C.; Villavicencio, M. Second-best electricity pricing in France: Effectiveness of existing rates in evolving power markets. Energy Econ. 2024, 136, 107673. [Google Scholar] [CrossRef]
- Li, N.; Gao, Y. Real-time pricing based on convex hull method for smart grid with multiple generating units. Energy 2023, 285, 129543. [Google Scholar] [CrossRef]
- Wesseh Jr, P.K.; Lin, B. A time-of-use pricing model of the electricity market considering system flexibility. Energy Rep. 2022, 8, 1457–1470. [Google Scholar] [CrossRef]
- Gao, D.; Zhang, T.; Liu, X. The Urban Renewable Energy Transition: Impact Assessment and Transmission Mechanisms of Climate Policy Uncertainty. Energies 2025, 18, 2089. [Google Scholar] [CrossRef]
- Zhang, S.; Cheng, L.; Ren, Y.; Yao, Y. Effects of carbon emission trading system on corporate green total factor productivity: Does environmental regulation play a role of green blessing? Environ. Res. 2024, 248, 118295. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, E.; Khan, D.; Anser, M.K.; Nassani, A.A.; Hassan, S.A.; Zaman, K. The influence of grid connectivity, electricity pricing, policy-driven power incentives, and carbon emissions on renewable energy adoption: Exploring key factors. Renew. Energy 2024, 232, 121108. [Google Scholar] [CrossRef]
- Gjorgievski, V.Z.; Velkovski, B.; Markovski, B.; Cundeva, S.; Markovska, N. Energy community demand-side flexibility: Energy storage and electricity tariff synergies. Energy 2024, 313, 134078. [Google Scholar] [CrossRef]
- Cai, Q.; Qing, J.; Xu, Q.; Shi, G.; Liang, Q.M. Techno-economic impact of electricity price mechanism and demand response on residential rooftop photovoltaic integration. Renew. Sustain. Energy Rev. 2024, 189, 113964. [Google Scholar] [CrossRef]
- Wang, Z.; Lam, J.S.L.; Huo, J. The bidding strategy for renewable energy auctions under government subsidies. Appl. Energy 2024, 353, 122148. [Google Scholar] [CrossRef]
- Zang, X.; Li, H.; Wang, S. Optimal design of energy-flexible distributed energy systems and the impacts of energy storage specifications under evolving time-of-use tariff in cooling-dominated regions. J. Energy Storage 2023, 72, 108462. [Google Scholar] [CrossRef]
- Shejul, K.; Harikrishnan, R. Energy consumption optimization of chiller plants with the genetic algorithm based gwo and jaya algorithm in the dynamic pricing demand response. Results Eng. 2024, 22, 102193. [Google Scholar] [CrossRef]
- Yuan, R.; Liu, M.; Chen, W.; Yan, J. Costs versus revenues of flexibility enhancement techniques for thermal power units in electricity-carbon joint markets. Energy 2024, 302, 131925. [Google Scholar] [CrossRef]
- Palaniyappan, B.; Ramu, S.K. Optimized LSTM-based electric power consumption forecasting for dynamic electricity pricing in demand response scheme of smart grid. Results Eng. 2025, 25, 104356. [Google Scholar] [CrossRef]
- Long, D.; Du, J.; Xin, Y. Assessing the nexus between natural resource consumption and urban sprawl: Empirical evidence from 288 cities in China. Resour. Policy 2023, 85, 103915. [Google Scholar] [CrossRef]
- Liu, X.; Wang, H.; You, C.; Yang, Z.; Yao, J. The impact of sustainable development policy for resource-based cities on green technology innovation: Firm-level evidence from China. J. Clean. Prod. 2024, 469, 143246. [Google Scholar] [CrossRef]
- Zhao, C.; Dong, K.; Wang, K.; Taghizadeh-Hesary, F. How can Chinese cities escape from carbon lock-in? The role of low-carbon city policy. Urban Clim. 2023, 51, 101629. [Google Scholar] [CrossRef]
- Jin, X.; Sun, G.; Zhang, M. Policy for whom? The heterogeneous effects of innovation policy on urban economy. Cities 2024, 153, 105193. [Google Scholar] [CrossRef]
- Zou, T.; Li, F.; Guo, P. Advancing effective energy transition: The effects and mechanisms of China’s dual-pilot energy policies. Energy 2024, 307, 132538. [Google Scholar] [CrossRef]
- Yang, J.C.; Chuang, H.C.; Kuan, C.M. Double machine learning with gradient boosting and its application to the Big N audit quality effect. J. Econom. 2020, 216, 268–283. [Google Scholar] [CrossRef]
- Ahrens, A.; Hansen, C.B.; Schaffer, M.E.; Wiemann, T. ddml: Double/debiased machine learning in Stata. Stata J. 2024, 24, 3–45. [Google Scholar] [CrossRef]
- Chernozhukov, V.; Chetverikov, D.; Demirer, M.; Duflo, E.; Hansen, C.; Newey, W.; Robins, J. Double/debiased machine learning for treatment and structural parameters. Econom. J. 2018, 21, C1–C68. [Google Scholar] [CrossRef]
- Gao, D.; Li, G.; Yu, J. Does digitization improve green total factor energy efficiency? Evidence from Chinese 213 cities. Energy 2022, 247, 123395. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, S.; Li, C.; Qin, Q. Impact of the promotion and application of new energy vehicles on urban green total factor energy efficiency. Sustain. Cities Soc. 2025, 130, 106567. [Google Scholar] [CrossRef]
- Zhou, C.; Qi, S. Has the pilot carbon trading policy improved China’s green total factor energy efficiency? Energy Econ. 2022, 114, 106268. [Google Scholar] [CrossRef]
- Peng, Y.; de Moraes Souza, J.G. Chaos, overfitting and equilibrium: To what extent can machine learning beat the financial market? Int. Rev. Financ. Anal. 2024, 95 Pt B, 103474. [Google Scholar] [CrossRef]
- Liu, T. Data visualization-based paradigm trajectory exploration towards development and shifts for China’s wind power policy. Renew. Sustain. Energy Rev. 2025, 217, 115715. [Google Scholar] [CrossRef]
- Sun, S.; Delgado, M.S. Local spatial difference-in-differences models: Treatment correlations, response interactions, and expanded local models. Empir. Econ. 2024, 67, 2077–2107. [Google Scholar] [CrossRef]
- Zhao, A.; Ploegmakers, H.; Rouwendal, J.; Ma, X. Land investment regulation and allocative efficiency: Evidence from the Chinese manufacturing sector. J. Econ. Geogr. 2025, 25, 151–174. [Google Scholar] [CrossRef]
- Antoniades, A.; Feenstra, R.C.; Xu, M. Using the retail distribution of sellers to impute expenditure shares. Am. Econ. Rev. 2022, 112, 2213–2236. [Google Scholar] [CrossRef]
- Emmanuel, A.O.; Eloho, O.-O.E.; Dabor, A.O.; Dabor, E.L.; Aggreh, M. Tax revenue, capital market performance and foreign direct investment in an emerging economy. Int. J. Econ. Financ. Issues 2024, 14, 290–298. [Google Scholar] [CrossRef]
- Liu, L.; Yao, X.; Han, Y.; Qi, X. Research on optimal management strategy of electro-thermal hybrid shared energy storage based on Nash bargaining under source-load uncertainty. J. Energy Storage 2024, 96, 112713. [Google Scholar] [CrossRef]
- Guo, B. The spillover effect of peak pricing. J. Environ. Econ. Manag. 2023, 121, 102845. [Google Scholar] [CrossRef]
- Han, Y.; Guo, H. Governmental support strategies and their effects on private capital engagement in public–private partnerships. Public Manag. Rev. 2024, 26, 908–926. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, Z.; Wang, Y. Green financial policy for fostering green technological innovation: The role of financing constraints, science expenditure, and heightened industrial structure. Sustainability 2024, 16, 9136. [Google Scholar] [CrossRef]
- Guo, Q.; Zhong, J. The effect of urban innovation performance of smart city construction policies: Evaluate by using a multiple period difference-in-differences model. Technol. Forecast. Soc. Change 2022, 184, 122003. [Google Scholar] [CrossRef]
- Jin, P.; Peng, C.; Song, M. Macroeconomic uncertainty, high-level innovation, and urban green development performance in China. China Econ. Rev. 2019, 55, 1–18. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, B.; Luo, H.; Chen, S. Digital economy and fiscal decentralization: Drivers of green innovation in China. Heliyon 2024, 10, e33870. [Google Scholar] [CrossRef]
- Li, J.H.; An, C.Y.; Li, C.P.; Zhang, J.X.; Liu, R.T. Multi-objective optimization scheduling method considering peak regulating market transactions for energy storage-new energy-thermal power. Trans. China Electrotech. Soc. 2023, 38, 6391–6406. [Google Scholar]
- Cui, D.; Ding, M.; Han, Y.; Suardi, S. Regulation-induced financial constraints, carbon emission and corporate innovation: Evidence from China. Energy Econ. 2023, 127, 107081. [Google Scholar] [CrossRef]
- Lavin, L.; Apt, J. The importance of peak pricing in realizing system benefits from distributed storage. Energy Policy 2021, 157, 112484. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, G.; Zhang, N. The role of bureaucratic incentives in the effectiveness of environmental regulations: Evidence from China. Resour. Energy Econ. 2025, 81, 101474. [Google Scholar] [CrossRef]
- Yin, L.; Tan, L.; Wu, J.; Gao, D. From risk to sustainable opportunity: Does climate risk perception lead firm ESG performance? J. Int. Financial Manag. Account. 2025, 36, 581–597. [Google Scholar] [CrossRef]
- Li, H.; Wang, P.; Fang, D. Differentiated pricing for the retail electricity provider optimizing demand response to renewable energy fluctuations. Energy Econ. 2024, 136, 107755. [Google Scholar] [CrossRef]
Variable | N | Mean | S.D | Min | First Quart | Median | Third Quart | Max |
---|---|---|---|---|---|---|---|---|
2111 | 0.282 | 0.084 | 0.021 | 0.228 | 0.274 | 0.331 | 1.148 | |
2111 | 0.217 | 0.413 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | |
2111 | 50.265 | 9.970 | 18.670 | 44.180 | 50.600 | 56.150 | 90.970 | |
2111 | 10.271 | 0.688 | 8.138 | 9.798 | 10.259 | 10.764 | 13.056 | |
2111 | 5.795 | 0.851 | 1.609 | 5.278 | 5.932 | 6.447 | 7.882 | |
2111 | 12.499 | 0.892 | 7.135 | 11.926 | 12.507 | 13.101 | 15.853 | |
Pollu | 2111 | 10.671 | 1.046 | 0.693 | 10.175 | 10.827 | 11.335 | 13.434 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Partial Linear Model | General Interaction Model | |||
GTFEE | GTFEE | GTFEE | GTFEE | |
0.035 *** | 0.025 *** | 0.032 *** | 0.029 *** | |
(0.004) | (0.005) | (0.002) | (0.002) | |
Controls | √ | √ | √ | √ |
Firm FE | ✕ | √ | ✕ | √ |
Year FE | ✕ | √ | ✕ | √ |
Observation | 2111 | 2111 | 2111 | 2111 |
(1) | (2) | (3) | |
---|---|---|---|
Invest | Retail | Revenue | |
0.086 ** | 0.145 *** | 0.112 *** | |
(0.031) | (0.027) | (0.033) | |
Controls | √ | √ | √ |
Firm FE | √ | √ | √ |
Year FE | √ | √ | √ |
Observation | 1911 | 1731 | 1711 |
(1) | (2) | (3) | |
---|---|---|---|
SE | Patent | G_patent | |
0.333 *** | 0.096 * | 0.094 ** | |
(0.092) | (0.056) | (0.050) | |
Controls | √ | √ | √ |
Firm FE | √ | √ | √ |
Year FE | √ | √ | √ |
Observation | 1711 | 1751 | 1851 |
(1) | (2) | (3) | |
---|---|---|---|
Western Cities | Central Cities | East Cities | |
−0.019 | 0.029 *** | 0.025 *** | |
(0.054) | (0.008) | (0.008) | |
Controls | √ | √ | √ |
Firm FE | √ | √ | √ |
Year FE | √ | √ | √ |
Observation | 566 | 609 | 936 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, D.; Wang, Q.; Han, Q. How Does Critical Peak Pricing Boost Urban Green Total Factor Energy Efficiency? Evidence from a Double Machine Learning Model. Energies 2025, 18, 4970. https://doi.org/10.3390/en18184970
Gao D, Wang Q, Han Q. How Does Critical Peak Pricing Boost Urban Green Total Factor Energy Efficiency? Evidence from a Double Machine Learning Model. Energies. 2025; 18(18):4970. https://doi.org/10.3390/en18184970
Chicago/Turabian StyleGao, Da, Qingshuo Wang, and Qingjiang Han. 2025. "How Does Critical Peak Pricing Boost Urban Green Total Factor Energy Efficiency? Evidence from a Double Machine Learning Model" Energies 18, no. 18: 4970. https://doi.org/10.3390/en18184970
APA StyleGao, D., Wang, Q., & Han, Q. (2025). How Does Critical Peak Pricing Boost Urban Green Total Factor Energy Efficiency? Evidence from a Double Machine Learning Model. Energies, 18(18), 4970. https://doi.org/10.3390/en18184970