Simulation of Hydrogen Drying via Adsorption in Offshore Hydrogen Production
Abstract
1. Introduction
2. Materials and Methods
2.1. Purification Process
2.2. Adsorption Isotherms and IAST
2.2.1. Experimental Water Adsorption Measurements
2.2.2. Ideal Adsorption Solution Theory (IAST)
3. Model
3.1. Balance Equations
- The size, shape, and porosity of particles are assumed to be uniform;
- Axial dispersed plug flow;
- The mixture (hydrogen and water) is considered to be an ideal gas mixture;
- Gradients of temperature, mass, and velocity in the radial direction are neglected;
- The solid and gas phases are in thermal equilibrium;
- The Linear Driving Force (LDF) model represents the mass transfer from the gas phase to the adsorbent;
- Heat transfer to the ambient is neglected.
3.1.1. Mass Balance of the Solid Phase
3.1.2. Mass Balance of the Gas Phase
3.1.3. Energy Balance for Gas and Solid Phases
3.1.4. Momentum Equation
3.2. Discretization
4. Simulation Results
5. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Notation
specific heat capacity of water adsorbed on the adsorbent, | |
specific heat capacity of fluid, | |
specific heat capacity of the adsorbent, | |
specific heat capacity of water, | |
d | diameter of particle, |
pore diameter of particle, | |
axial dispersion coefficient, | |
free gas diffusion coefficient, | |
E | characteristic energy, |
specific adsorption enthalpy, | |
specific vaporization enthalpy, | |
maximum adsorption loading, | |
R | universal gas constant, |
u | interstitial velocity, |
bed velocity, | |
water loading in fluid, | |
water loading in adsorbent, | |
maximum adsorption loading, |
Greek symbols | |
thermal expansion coefficient of water, | |
effective diffusion coefficient, | |
bed porosity, - | |
inner porosity of the particle, - | |
effective fluid viscosity, | |
fluid viscosity, | |
thermal conductivity of particle, | |
thermal conductivity of fluid, | |
axial thermal conductivity, | |
tortuosity, - | |
diffusion volume of component i, - | |
density of dry adsorbent, | |
density of fluid, |
Appendix A
Temperature [°C] | ||||||||
---|---|---|---|---|---|---|---|---|
25 | 35 | 45 | 55 | 65 | 75 | 85 | ||
Pressure [Pa] | 1123 | 307.36 | 294.26 | 280.56 | 267.51 | 253.6 | 239.23 | 225.13 |
2339 | 327.11 | 313.21 | 300.37 | 288.0 | 274.61 | 261.46 | 247.65 |
Temperature [°C] | |||||||
---|---|---|---|---|---|---|---|
95 | 105 | 115 | 125 | 135 | 145 | ||
Pressure [Pa] | 1123 | 203.24 | 181.44 | 158.46 | 137.70 | 119.34 | 102.75 |
2339 | 228.28 | 211.79 | 191.76 | 169.74 | 149.04 | 126.37 |
References
- Wang, X.; Meng, Q.; Gao, L.; Jin, Z.; Ge, J.; Liu, C.; Xing, W. Recent progress in hydrogen production from formic acid decomposition. Int. J. Hydrogen Energy 2018, 43, 7055–7071. [Google Scholar] [CrossRef]
- El-Shafie, M. Hydrogen production by water electrolysis technologies: A review. Results Eng. 2023, 20, 101426. [Google Scholar] [CrossRef]
- Amini Horri, B.; Ozcan, H. Green hydrogen production by water electrolysis: Current status and challenges. Curr. Opin. Green Sustain. Chem. 2024, 47, 100932. [Google Scholar] [CrossRef]
- Niklaus, L.; Rothe, P.; Liebertseder, J.; Doppelbauer, M. Backup power supply for a hydrogen-producing offshore wind turbine—A technology comparison. Wind Energy Sci. 2025, 10, 1807–1819. [Google Scholar] [CrossRef]
- Wiens, M.; Luxa, A.; Wendt, J.; Meyer, T. Multi-physics system modelling based on bond graph theory for offshore hydrogen production. J. Phys. Conf. Ser. 2024, 2767, 082012. [Google Scholar] [CrossRef]
- ISO 14687:2019; Hydrogen Fuel Quality—Product Specification. International Organization for Standardization (ISO): Geneva, Switzerland, 2019. Available online: https://www.iso.org/standard/69539.html (accessed on 11 April 2024).
- Ligen, Y.; Vrubel, H.; Girault, H. Energy efficient hydrogen drying and purification for fuel cell vehicles. Int. J. Hydrogen Energy 2020, 45, 10639–10647. [Google Scholar] [CrossRef]
- Sattler, K. Thermische Trennverfahren, 3rd ed.; Wiley VCH: Weinheim, Germany, 2001. [Google Scholar]
- PNE AG; Fraunhofer ISE; SILICA Verfahrenstechnik GmbH; KONGSTEIN GmbH; Wystrach GmbH. Projekt OffsH2ore—Offshore-Wasserstofferzeugung Mittels Offshore-Windenergie als Insellösung. Endbericht; Technical Report; Fraunhofer ISE: Freiburg, Germany, 2023. [Google Scholar]
- Clausse, M.; Merel, J.; Meunier, F. Numerical parametric study on CO2 capture by indirect thermal swing adsorption. Int. J. Greenh. Gas Control 2011, 5, 1206–1213. [Google Scholar] [CrossRef]
- Ribeiro, A.M.; Grande, C.A.; Lopes, F.V.; Loureiro, J.M.; Rodrigues, A.E. A parametric study of layered bed PSA for hydrogen purification. Chem. Eng. Sci. 2008, 63, 5258–5273. [Google Scholar] [CrossRef]
- Mette, B.; Kerskes, H.; Drück, H.; Müller-Steinhagen, H. Experimental and numerical investigations on the water vapor adsorption isotherms and kinetics of binderless zeolite 13X. Int. J. Heat Mass Transf. 2014, 71, 555–561. [Google Scholar] [CrossRef]
- Abohamzeh, E.; Frey, G. Numerical Investigation of the Adsorption Process of Zeolite/Water in a Thermochemical Reactor for Seasonal Heat Storage. Energies 2022, 15, 5944. [Google Scholar] [CrossRef]
- Streb, A.; Mazzotti, M. Adsorption for efficient low carbon hydrogen production: Part 1—Adsorption equilibrium and breakthrough studies for H2/CO2/CH4 on zeolite 13X. Adsorption 2021, 27, 541–558. [Google Scholar] [CrossRef]
- Espinosa-López, M.; Darras, C.; Poggi, P.; Glises, R.; Baucour, P.; Rakotondrainibe, A.; Besse, S.; Serre-Combe, P. Modelling and experimental validation of a 46 kW PEM high pressure water electrolyzer. Renew. Energy 2018, 119, 160–173. [Google Scholar] [CrossRef]
- Winkler, M.; Teicht, C.; Corhan, P.; Polyzoidis, A.; Bartholomé, K.; Schäfer-Welsen, O.; Pappert, S. Thermal Switch Based on an Adsorption Material in a Heat Pipe. Energies 2021, 14, 5130. [Google Scholar] [CrossRef]
- Teicht, C. An easy-to-use modification of the potential theory of adsorption and creation of an adsorbent data base. Energy 2023, 263, 125968. [Google Scholar] [CrossRef]
- Gaeini, M.; Zondag, H.; Rindt, C. Non-isothermal kinetics of zeolite water vapor adsorption into a packed bed lab scale thermochemical reactor. In Proceedings of the 15th International Heat Transfer Conference (IHTC-15), Kyoto, Japan, 10–15 August 2014; Begell House Inc.: Danbury, CT, USA, 2014; pp. 9053–9063. [Google Scholar]
- Costa, E.; Sotelo, J.L.; Calleja, G.; Marrón, C. Adsorption of binary and ternary hydrocarbon gas mixtures on activated carbon: Experimental determination and theoretical prediction of the ternary equilibrium data. AIChE J. 1981, 27, 5–12. [Google Scholar] [CrossRef]
- Sakuth, M.; Meyer, J.; Gmehling, J. Measurement and prediction of binary adsorption equilibria of vapors on dealuminated Y-zeolites (DAY). Chem. Eng. Process. 1998, 37, 267–277. [Google Scholar] [CrossRef]
- Suwanayuen, S.; Danner, R.P. Vacancy solution theory of adsorption from gas mixtures. AIChE J. 1979, 26, 76–83. [Google Scholar] [CrossRef]
- Sharma, S.; Balestra, S.R.G.; Baur, R.; Agarwal, U.; Zuidema, E.; Rigutto, M.S.; Calero, S.; Vlugt, T.J.H.; Dubbeldam, D. RUPTURA: Simulation code for breakthrough, ideal adsorption solution theory computations, and fitting of isotherm models. Mol. Sim. 2023, 49, 893–953. [Google Scholar] [CrossRef]
- Myers, A.L.; Prausnitz, J.M. Thermodynamics of mixed-gas adsorption. AIChE J. 1965, 11, 121–127. [Google Scholar] [CrossRef]
- Simon, C.; Smit, B.; Haranczyk, M. pyIAST: Ideal adsorbed solution theory (IAST) Python package. Comput. Phys. Commun. 2015, 200, 364–380. [Google Scholar] [CrossRef]
- Kast, W. Adsorption aus der Gasphase-Grundlagen und Verfahren. Chem. Ing. Tech. 1981, 53, 160–172. [Google Scholar] [CrossRef]
- Bathen, D.; Breitbach, M. Adsorptionstechnik, 1st ed.; Springer: Heidelberg, Germany, 2001. [Google Scholar]
- Kleiber, M.; Joh, R. D1 Berechnungsmethoden für thermophysikalische Stoffeigenschaften. In VDI-Wärmeatlas; Stephan, P., Kabelac, S., Kind, M., Mewes, D., Schaber, K., Wetzel, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 157–200. [Google Scholar] [CrossRef]
- Tsotsas, E. M7 Wärmeleitung und Dispersion in durchströmten Schüttungen. In VDI-Wärmeatlas; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1517–1534. [Google Scholar] [CrossRef]
- Tsotsas, E. M11 Wärmeleitfähigkeit von Schüttschichten. In VDI-Wärmeatlas; Stephan, P., Kabelac, S., Kind, M., Mewes, D., Schaber, K., Wetzel, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1831–1843. [Google Scholar] [CrossRef]
- NIST Chemistry WebBook. Available online: https://webbook.nist.gov/ (accessed on 20 July 2025).
- Vučelić, V.; Vučelić, D. Heat Capacities of Water on Zeolites. Stud. Surf. Sci. Catal. 1985, 24, 475–480. [Google Scholar] [CrossRef]
- Do, D.D. Adsorption Analysis: Equilibria and Kinetics, 1st ed.; Imperial College Press: London, UK, 1998. [Google Scholar] [CrossRef]
- Wallnöfer-Ogris, E.; Grimmer, I.; Ranz, M.; Höglinger, M.; Kartusch, S.; Rauh, J.; Macherhammer, M.G.; Grabner, B.; Trattner, A. A review on understanding and identifying degradation mechanisms in PEM water electrolysis cells: Insights for stack application, development, and research. Int. J. Hydrogen Energy 2024, 65, 381–397. [Google Scholar] [CrossRef]
- Rentschler, P.; Klahn, C.; Dittmeyer, R. The Need for Dynamic Process Simulation: A Review of Offshore Power-to-X Systems. Chem. Ing. Tech. 2024, 96, 114–125. [Google Scholar] [CrossRef]
Parameter | Unit | Value-Gaeini | Value-Experimental |
---|---|---|---|
18 | |||
18,016 | 27,482.81 | ||
- | |||
- |
Parameter | Unit | Value |
---|---|---|
s | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dik, K.; Teicht, C. Simulation of Hydrogen Drying via Adsorption in Offshore Hydrogen Production. Energies 2025, 18, 4906. https://doi.org/10.3390/en18184906
Dik K, Teicht C. Simulation of Hydrogen Drying via Adsorption in Offshore Hydrogen Production. Energies. 2025; 18(18):4906. https://doi.org/10.3390/en18184906
Chicago/Turabian StyleDik, Katharina, and Christian Teicht. 2025. "Simulation of Hydrogen Drying via Adsorption in Offshore Hydrogen Production" Energies 18, no. 18: 4906. https://doi.org/10.3390/en18184906
APA StyleDik, K., & Teicht, C. (2025). Simulation of Hydrogen Drying via Adsorption in Offshore Hydrogen Production. Energies, 18(18), 4906. https://doi.org/10.3390/en18184906