Deep-Learning-Based Controller for Parallel DSTATCOM to Improve Power Quality in Distribution System
Abstract
1. Introduction
- A standard bus system like IEEE 13 and IEEE 33 test bus system with DL-based DSTATCOM model is designed to analyze various PQ issue scenarios.
- At the grid, a generator is chosen whose bus is regarded as PCC. In that system, a DSTATCOM compensator is connected.
- A real-time dataset is generated that contains three-phase bus voltages under normal and various PQ issue conditions.
- As per the obtained dataset, a Deep Neural network (DNN) controller is constructed, and its trained model is integrated into the system.
- The controller analyzes the voltage of each bus every second and generates the appropriate pulse signal of the compensator. The proposed model mitigation process is validated in several circumstances, like swell, sag, interruption, and harmonics.
2. Related Work
3. Proposed Methodology
3.1. Modeling of STATCOM
3.2. Voltage Regulation of DSTATCOM
3.3. Modeling of DL Controller
3.4. Modeling of DNN Controller
3.5. Working Process
4. Result and Discussion
- Case 1: Performance analysis in IEEE 13 bus system
- Case 2: Performance analysis in IEEE 33 bus system
4.1. Dataset Generation
4.2. Case 1: Performance Analysis in IEEE 13 Bus System
4.2.1. IEEE 13 Bus System
- i.
- Sag issues
- ii.
- Swell issues
- iii.
- Interruption issues
4.2.2. Performance Analysis of the Proposed Controller
- Sensitivity: Its definition was given as the proportion of real positives to the sum of true positives and false negatives.
- Specificity: The total number of true negatives produced to the sum of true negatives and false positives produced is defined by this measure.
- Accuracy: It can be calculated with specificity and sensitivity metrics. In mathematics, it looks as follows:
- FPR: It is the percentage of all drawbacks that still result in benefits.
- Precision: The quantity of created labels is divided by the quantity of appropriately annotated labels.
- F1 measure: It is the recall and precision scores’ geometric mean.
- Error: It is computed using the accuracy metrics; the numerical modeling of error computation is stated as follows:
- Kappa: A metric used to compare an actual accuracy with a predicted accuracy is the Kappa statistic.
- MCC: The Mathew Correlation Coefficient (MCC) is essentially a correlation coefficient among observed and predicted classifications.
4.3. Case 2: Performance Analysis in IEEE 33 Bus System
IEEE 33 Bus System
- i.
- Sag issue
- ii.
- Swell issue
- iii.
- Interruption issues
4.4. Comparison of Performance Metrics
4.5. Comparison of Performance in IEEE 13 and IEEE 33 Bus System
4.6. Comparative Analysis of the Controller
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghiasi, M. Technical and economic evaluation of power quality performance using FACTS devices considering renewable generations. Renew. Energy Focus 2019, 29, 49–62. [Google Scholar] [CrossRef]
- Bajaj, M.; Singh, A.K.; Alowaidi, M.; Sharma, N.K.; Sharma, S.K.; Mishra, S. Power quality assessment of distorted distribution networks incorporating renewable distributed generation systems based on the analytic hierarchy process. IEEE Access 2020, 8, 145713–145737. [Google Scholar] [CrossRef]
- Pene, A.D.; Bikai, J.; Bidias, J.B.; Louossi, T.; Gilbert, D.B.; Dieudonne, K.K.; Nsouandele, J.L.; Djongyang, N.; Kapseu, C. A Robust Maximum Power Point Tracking Control under Shading Effects on Photovoltaic Systems. Int. Trans. Electr. Eng. Comput. Sci. 2025, 4, 137–151. [Google Scholar] [CrossRef]
- Mahela, O.P.; Parihar, M.; Garg, A.R.; Khan, B.; Kamel, S. A hybrid signal processing technique for recognition of complex power quality disturbances. Electr. Power Syst. Res. 2022, 207, 107865. [Google Scholar] [CrossRef]
- Raju, S.G. Hybrid Energy Generation System with Brushless Generators. Int. Trans. Electr. Eng. Comput. Sci. 2023, 2, 20–29. [Google Scholar] [CrossRef]
- Ansari, M.N.; Singh, R.K. Application of D-STATCOM for harmonic reduction using power balance theory. Turk. J. Comput. Math. Educ. TURCOMAT 2021, 12, 2496–2503. [Google Scholar]
- Nanda, H.; Chalamalla, S.R. Harmonic and reactive power compensation with IRP controlled DSTATCOM. In Innovations in Electrical and Electronics Engineering: Proceedings of the 4th ICIEEE 2019, Hyderabad, India, 26–27 July 2019; Springer: Singapore, 2020; pp. 215–224. [Google Scholar]
- Balasubramanian, M.; Nagarajan, C. FFDSOGI-PLL-based DSTATCOM for Power Quality Enhancement. IEIE Trans. Smart Process. Comput. 2022, 11, 376–384. [Google Scholar]
- Naz, M.N.; Imtiaz, S.; Bhatti, M.K.; Awan, W.Q.; Siddique, M.; Riaz, A. Dynamic stability improvement of decentralized wind farms by effective distribution static compensator. J. Mod. Power Syst. Clean Energy 2020, 9, 516–525. [Google Scholar]
- Karimi, H.; Simab, M.; Nafar, M. Enhancement of power quality utilizing photovoltaic fed D-STATCOM based on zig-zag transformer and fuzzy controller. Sci. Iran. 2022, 29, 2465–2479. [Google Scholar] [CrossRef]
- Goud, B.S.; Reddy, C.R.; Bajaj, M.; Elattar, E.E.; Kamel, S. Power Quality Improvement Using Distributed Power Flow Controller with BWO-Based FOPID Controller. Sustainability 2021, 13, 11194. [Google Scholar] [CrossRef]
- Krishna, D.V.; Kalavathi, M.S.; Ganeshbabu, B. A Novel NR-DA-Based ANN for SHEPWM in Cascaded Multilevel Inverters for Renewable Energy Applications. Int. Trans. Electr. Eng. Comput. Sci. 2024, 3, 135–143. [Google Scholar] [CrossRef]
- Ahmad, T.; Zhang, D.; Huang, C.; Zhang, H.; Dai, N.; Song, Y.; Chen, H. Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities. J. Clean. Prod. 2021, 289, 125834. [Google Scholar] [CrossRef]
- Prasad, K.K.; Myneni, H.; Kumar, G.S. Power quality improvement and PV power injection by DSTATCOM with variable DC link voltage control from RSC-MLC. IEEE Trans. Sustain. Energy 2018, 10, 876–885. [Google Scholar] [CrossRef]
- Badoni, M.; Singh, A.; Singh, B. Power quality improvement using DSTATCOM with affine projection algorithm. IET Gener. Transm. Distrib. 2018, 12, 3261–3269. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, P. Power quality improvement for grid-connected PV system based on distribution static compensator with fuzzy logic controller and UVT/ADALINE-based least mean square controller. J. Mod. Power Syst. Clean Energy 2021, 9, 1289–1299. [Google Scholar] [CrossRef]
- Kanase, D.B.; Jadhav, H.T. Three-phase distribution static compensator for power quality improvement. J. Inst. Eng. India Ser. B 2022, 103, 1809–1826. [Google Scholar] [CrossRef]
- Pandu, S.B.; Sundarabalan, C.K.; Srinath, N.S.; Krishnan, T.S.; Priya, G.S.; Balasundar, C.; Sharma, J.; Soundarya, G.; Siano, P.; Alhelou, H.H. Power quality enhancement in sensitive local distribution grid using interval type-II fuzzy logic controlled DSTATCOM. IEEE Access 2021, 9, 59888–59899. [Google Scholar] [CrossRef]
- Babu, J.V.; Malligunta, K.K. Multilevel diode clamped D-Statcom for power quality improvement in distribution systems. Int. J. Power Electron. Drive Syst. 2021, 12, 217. [Google Scholar] [CrossRef]
- Hasanzadeh, S.; Shojaeian, H.; Mohsenzadeh, M.M.; Heydarian-Forushani, E.; Alhelou, H.H.; Siano, P. Power quality enhancement of the distribution network by multilevel STATCOM-compensated based on improved one-cycle controller. IEEE Access 2022, 10, 50578–50588. [Google Scholar] [CrossRef]
- Arya, A.K.; Kumar, A.; Chanana, S. Analysis of distribution system with D-STATCOM by gravitational search algorithm (GSA). J. Inst. Eng. India Ser. B 2019, 100, 207–215. [Google Scholar] [CrossRef]
- Gopal, B.; Sreenivas, G.N. Improvement in Power Quality with D-Statcom Using Voltage Source Converters in Dg Systems. Ilkogr. Online 2019, 18, 1495–1513. [Google Scholar]
- Ahmed, S.A. Performance Analysis of Power Quality Improvement for Standard IEEE 14-Bus Power System based on FACTS Controller. J. Electr. Eng. Electron. Control. Comput. Sci. 2019, 5, 11–18. [Google Scholar]
- Dataset 1. Available online: http://images.shoutwiki.com/mindworks/7/7e/IEEE_13_Bus_Power_System.pdf (accessed on 1 September 2025).
- Dataset 2. Available online: https://link.springer.com/content/pdf/bbm:978-3-030-39943-6/1.pdf (accessed on 1 September 2025).
- Juyal, V.D.; Arora, S. Power quality improvement of a system using three phase cascaded H-bridge multilevel inverters (a comparison). In Proceedings of the 2016 International Conference on Recent Advances and Innovations in Engineering (ICRAIE), Jaipur, India, 23–25 December 2016; IEEE: Piscataway, NJ, USA, 2019; pp. 1–7. [Google Scholar]
- Das, S.R.; Ray, P.K.; Sahoo, A.K.; Balasubramanian, K.; Reddy, G.S. Improvement of power quality in a three-phase system using an adaline-based multilevel inverter. Front. Energy Res. 2020, 8, 23. [Google Scholar] [CrossRef]
- Mangaraj, M.; Muyeen, S.M.; Babu, B.C.; Nizami, T.K.; Singh, S.; Chakravarthy, A. Deep Reinforced Learning-Based Inductively Coupled DSTATCOM under load uncertainties. Electr. Eng. 2024, 107, 8761–8772. [Google Scholar] [CrossRef]
Parameter | Ranges |
---|---|
Capacitance | 1000 × 10−6 F |
Initial voltage | 800 V |
Parameter | Method | Ranges |
---|---|---|
Hidden neuron | DNN | 10 |
Epoch | 30 | |
Epoch | FFNN | 100 |
Gradient | 6.8 × 10−5 | |
µ | 1 × 10−7 | |
Training algorithm | Levenberg-Marquardt | |
Num. Neighbors | KNN | 5 |
Num. Observations | 150 | |
Distance | Euclidean |
Dataset | IEEE 13 Bus | IEEE 33 Bus |
---|---|---|
Overall data | 20,000 | 20,000 |
Attributes | 39 | 99 |
Bus no. | Voltage (V) | Sag (V) | Swell (V) | Interruption (V) |
---|---|---|---|---|
1 | 3417 | 2890 | 3900 | 2300 |
2 | 4100 | 3560 | 4630 | 3325 |
3 | 4180 | 3455 | 4850 | 2200 |
4 | 4180 | 3278 | 5600 | 15 |
5 | 4180 | 2280 | 5600 | 15 |
6 | 10,890 | 10,550 | 10,600 | 10,500 |
7 | 9143 | 8677 | 9150 | 8580 |
8 | 6937 | 6340 | 7300 | 6000 |
9 | 7175 | 6800 | 7450 | 6665 |
10 | 6860 | 6445 | 7150 | 6265 |
11 | 6650 | 6200 | 6950 | 6000 |
12 | 6600 | 6125 | 6920 | 5858 |
13 | 6770 | 6230 | 7105 | 6910 |
Bus no. | Voltage (V) | Sag (V) | Swell (V) | Interruption (V) |
---|---|---|---|---|
1 | 1.79 × 104 | 1.7885 × 104 | 1.7913 × 104 | 1.7837 × 104 |
2 | 1.785 × 104 | 1.77 × 104 | 1.8 × 104 | 1.7 × 104 |
3 | 1.765 × 104 | 1.69 × 104 | 1.865 × 104 | 1.334 × 104 |
4 | 1.7578 × 104 | 1.67 × 104 | 1.874 × 104 | 1.25 × 104 |
5 | 1.75 × 104 | 1.65 × 104 | 1.88 × 104 | 1.175 × 104 |
6 | 1.736 × 104 | 1.6 × 104 | 1.915 × 104 | 9680 |
7 | 1.734 × 104 | 1.6 × 104 | 1.9 × 104 | 1 × 104 |
8 | 1.732 × 104 | 1.618 × 104 | 1.894 × 104 | 1 × 104 |
9 | 1.725 × 104 | 1.607 × 104 | 1.89 × 104 | 1 × 104 |
10 | 1.724 × 104 | 1.61 × 104 | 1.888 × 104 | 1 × 104 |
11 | 1.725 × 104 | 1.61 × 104 | 1.883 × 104 | 1 × 104 |
12 | 1.725 × 104 | 1.6 × 104 | 1.887 × 104 | 1 × 104 |
13 | 1.718 × 104 | 1.58 × 104 | 1.9 × 104 | 9400 |
14 | 1.7162 × 104 | 1.58 × 104 | 1.9 × 104 | 9050 |
15 | 1.715 × 104 | 1.58 × 104 | 1.91 × 104 | 8700 |
16 | 1.712 × 104 | 1.564 × 104 | 1.92 × 104 | 8000 |
17 | 1.705 × 104 | 1.5 × 104 | 1.95 × 104 | 6200 |
18 | 1.703 × 104 | 1.5 × 104 | 1.97 × 104 | 5450 |
19 | 1.781 × 104 | 1.76 × 104 | 1.80 × 104 | 1.667 × 104 |
20 | 1.754 × 104 | 1.688 × 104 | 1.84 × 104 | 1.37 × 104 |
21 | 1.7468 × 104 | 1.668 × 104 | 1.856 × 104 | 1.275 × 104 |
22 | 1.74 × 104 | 1.65 × 104 | 1.864 × 104 | 12,000 |
23 | 1.752 × 104 | 1.642 × 104 | 1.9 × 104 | 1750 |
24 | 1.734 × 104 | 1.55 × 104 | 2 × 104 | 5400 |
25 | 1.72 × 104 | 1.456 × 104 | 2.1 × 104 | 78 |
26 | 1.734 × 104 | 1.6 × 104 | 1.82 × 104 | 9130 |
27 | 1.731 × 104 | 1.584 × 104 | 1.94 × 104 | 8357 |
28 | 1.722 × 104 | 1.5 × 104 | 2 × 104 | 5000 |
29 | 1.715 × 104 | 1.5 × 104 | 2.07 × 104 | 2300 |
30 | 1.700 × 104 | 1.5 × 104 | 2.02 × 104 | 2785 |
31 | 1.703 × 104 | 1.5 × 104 | 2 × 104 | 3750 |
32 | 1.7 × 104 | 1.5 × 104 | 2 × 104 | 4300 |
33 | 1.7 × 104 | 1.5 × 104 | 2 × 104 | 5000 |
Metrics | IEEE 13 Bus System | IEEE 33 Bus System |
---|---|---|
Accuracy | 99.9 | 99.9 |
Error | 0.1 | 0.1 |
F1 score | 99.9 | 99.9 |
False positive rate | 0.01 | 0.01 |
Kappa | 99.9 | 99.9 |
MCC | 99.9 | 99.9 |
Precision | 99.9 | 99.9 |
Sensitivity | 99.9 | 99.9 |
Specificity | 99.9 | 99.9 |
Condition | IEEE 13 Bus System THD | IEEE 33 Bus System THD |
---|---|---|
Sag | 0.09 | 1.99 |
Swell | 0.08 | 0.44 |
Interruption | 0.01 | 0.01 |
Parameters | A-LMS [26] | VSC [27] | Deep Reinforcement Learning (IC-DSTATCOM) [28] | Proposed FFNN | |
---|---|---|---|---|---|
IEEE 13 Bus | IEEE 33 Bus | ||||
Load side THD | 1.21% | 3.65% | 27.90% | 0.09% | 1.99% |
Source side THD | - | 21.10% | 0.94% | 0% | 0% |
Model Variation | No. of Hidden Layers | Neurons Per Layer | Total Weights | THD (%) IEEE 13-Bus (Sag) | THD (%) IEEE 33-Bus (Sag) |
---|---|---|---|---|---|
Baseline (proposed) | 1 | 10 | 1100 | 0.09 | 1.99 |
Variation 1 | 2 | 20 | 4200 | 0.07 | 1.50 |
Variation 2 | 3 | 30 | 9300 | 0.05 | 1.20 |
Variation 3 | 4 | 50 | 20,500 | 0.04 | 1.10 |
Variation 4 | 2 | 10 | 2200 | 0.08 | 1.70 |
Scenario No | Power Load(kw) | Harmonic Distortion (%) | Control Unit Location | THD After Compensation (%) |
---|---|---|---|---|
1 | 500 | 5 | Bus 5 | 0.09 |
2 | 750 | 7 | Bus 5 | 0.12 |
3 | 500 | 10 | Bus 10 | 1.12 |
4 | 1000 | 5 | Bus 15 | 0.18 |
5 | 600 | 8 | Bus 5 | 0.11 |
6 | 750 | 12 | Bus 10 | 1.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vali, A.K.; Varma, P.S.; Reddy, C.R.; Alanazi, A.; Elrashidi, A. Deep-Learning-Based Controller for Parallel DSTATCOM to Improve Power Quality in Distribution System. Energies 2025, 18, 4902. https://doi.org/10.3390/en18184902
Vali AK, Varma PS, Reddy CR, Alanazi A, Elrashidi A. Deep-Learning-Based Controller for Parallel DSTATCOM to Improve Power Quality in Distribution System. Energies. 2025; 18(18):4902. https://doi.org/10.3390/en18184902
Chicago/Turabian StyleVali, A. Kasim, P. Srinivasa Varma, Ch. Rami Reddy, Abdulaziz Alanazi, and Ali Elrashidi. 2025. "Deep-Learning-Based Controller for Parallel DSTATCOM to Improve Power Quality in Distribution System" Energies 18, no. 18: 4902. https://doi.org/10.3390/en18184902
APA StyleVali, A. K., Varma, P. S., Reddy, C. R., Alanazi, A., & Elrashidi, A. (2025). Deep-Learning-Based Controller for Parallel DSTATCOM to Improve Power Quality in Distribution System. Energies, 18(18), 4902. https://doi.org/10.3390/en18184902