Investigation on Critical Heat Flux of Flow Boiling in Rectangular Microchannels: A Parametric Study and Assessment of New Prediction Method
Abstract
1. Introduction
2. Experimental Setup and Method
2.1. Experimental Setup
2.2. Test Section
2.3. Experimental Process
2.4. Heat Loss Estimation
2.5. Data Acquisition and Uncertainties
3. Results and Discussion
3.1. CHF Identification and Characterization
3.2. CHF Trends Under Varied Conditions
3.2.1. Effect of Mass Flux (G)
3.2.2. Effect of Channel Hydraulic Diameter (De)
3.2.3. Effect of System Pressure (P)
3.2.4. Effect of Inlet Subcooling (∆Tsub,in)
3.3. CHF Predictive Model Study
3.3.1. Validation of Existing Models
3.3.2. Development of Modified CHF Model
- Data Preprocessing
- 2.
- Network Architecture Design
- 3.
- Training Strategy
- 4.
- Implementation Details
3.3.3. Model Performance Evaluation and Comparative Analysis
4. Conclusions
- (1)
- Based on mechanistic models such as the theory of liquid sublayer drying and interfacial detachment, the occurrence of CHF can be determined by monitoring sudden increases in wall superheat (∆Toh), severe pressure drop fluctuations, and visual observations of localized drying.
- (2)
- CHF increases with higher G, but the growth rate diminishes due to enhanced liquid entrainment into the vapor core, which accelerates thin-film dryout. Larger channels (De ≥ 1.0 mm) exhibit significantly higher CHF (up to 78% improvement) by mitigating bubble confinement and enhancing liquid replenishment. Elevated pressure stabilizes the liquid film by suppressing bubble nucleation frequency, leading to an increase in CHF with G. Higher subcooling (∆Tsub,in) delays boiling inception and reduces vapor generation, improving CHF by up to 16.7%.
- (3)
- Existing CHF models (Sudo, Katto–Ohno, Qu–Mudawar, and Zhang–Hibiki) overpredicted experimental values, especially for De < 1.0 mm (MAE up to 148.69%). ANN deep learning models have an overall MAE of 8.93%, and 93% of the predictions are within ±15%, providing a reliable tool for designing high heat flow microchannel cooling systems in applications.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
qeff | Heat flux, kW/m2 |
S | Heating area, m2 |
Q | Input power produced, W |
Qloss | Heat loss of experimental section, W |
qCHF | Critical Heat flux, kW/m2 |
G | Mass flux, kg/(m2∙s) |
M | Mass flow rate, kg/s |
Hch | Channel depth, m |
Wch | Channel spacing, m |
Nch | Channel quantities |
Ach | Flow area of channel, m2 |
Ww | Minichannel interval spacing, m |
hi | Heat transfer coefficient at position i, kW/(m2∙K) |
Tf | Fluid temperature, °C |
Tw,i | Wall temperature at position i, °C |
kst | Heat sink thermal conductivity, W/(m∙K) |
dch | Distance from base to the thermocouple, m |
Ti | Wall temperature at position i, °C |
λa | Thermal conductivity, W/(m∙K) |
Tsat | Fluid saturation temperature, °C |
∆Toh | Wall superheat temperature, °C |
hfg | Latent heat of vaporization, J/kg |
Tsub,in | Inlet temperature, °C |
Ltp | Saturated region length, m |
Lst | Subcooled region length, m |
xe | Vapor quality |
Tout | Outlet temperature, °C |
Zi | Distance between test points and inlet, m |
xout | Outlet vapor quality |
σ(∆Ptot) | Standard deviation |
∆Ptot | Pressure drop between inlet and outlet, kPa |
cp,l | Liquid specific heat, J/(kg∙K) |
References
- Zhang, X.L.; Ji, Z.; Wang, J.F.; Lv, X. Research progress on structural optimization design of microchannel heat sinks applied to electronic devices. Appl. Therm. Eng. 2023, 235, 121294. [Google Scholar] [CrossRef]
- Kokate, R.; Park, C. Experimental analysis of subcooled flow boiling in a microchannel evaporator of a pumped two-phase loop. Appl. Therm. Eng. 2024, 249, 123154. [Google Scholar] [CrossRef]
- Tuckerman, D.B.; Pease, R.F.W. High-performance heat sinking for VLSI. IEEE Electron Device Lett. 1981, 2, 126–129. [Google Scholar] [CrossRef]
- Shang, H.; Yan, Z.; Xia, G. Analysis of influence of inlet vapor quality on heat transfer and flow pattern in mini-channels during flow condensation process. Appl. Therm. Eng. 2024, 236, 121864. [Google Scholar] [CrossRef]
- Du, L.; Hu, W.B. An overview of heat transfer enhancement methods in microchannel heat sinks. Chem. Eng. Sci. 2023, 280, 119081. [Google Scholar] [CrossRef]
- Shingote, C.; Huang, C.-N.; Kharangate, C.R. Investigation of flow boiling critical heat flux and heat transfer within a horizontally oriented channel with one-sided heating at three levels of subcooled inlet. Int. Commun. Heat Mass Transf. 2024, 152, 107297. [Google Scholar] [CrossRef]
- Guo, L.; Camm, J.; Hirokawa, T.; Li, H.; Huang, L. A detailed review on the role of critical heat flux in micro-channel dryout phenomena and strategies for heat transfer enhancement. Int. J. Heat Mass Transf. 2025, 241, 126740. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, W.; Gu, L.; Shan, J.; Zhang, L.; Su, X. Existing DNB-type CHF mechanistic models and relations with visualized experiments in forced convective flow boiling: A review. Prog. Nucl. Energy 2022, 148, 104225. [Google Scholar] [CrossRef]
- Park, J.E.; Thome, J.R. Critical heat flux in multi-microchannel copper elements with low pressure refrigerants. Int. J. Heat Mass Transf. 2010, 53, 110–122. [Google Scholar] [CrossRef]
- Mauro, A.W.; Thome, J.R.; Toto, D.; Vanoli, G.P. Saturated critical heat flux in a multi-microchannel heat sink fed by a split flow system. Exp. Therm. Fluid Sci. 2010, 34, 81–92. [Google Scholar] [CrossRef]
- Roday, A.P.; Jensen, M.K. Study of the critical heat flux condition with water and R-123 during flow boiling in microtubes. Part I: Experimental results and discussion of parametric effects. Int. J. Heat Mass Transf. 2009, 52, 3235–3249. [Google Scholar] [CrossRef]
- Roldão, T.C.B.; Tibiriçá, C.B. Critical heat flux, heat transfer and pressure drop at high mass fluxes for R123 in a single microchannel. Int. J. Heat Mass Transf. 2024, 222, 125143. [Google Scholar] [CrossRef]
- Roldão, T.C.B.; Tibiriçá, C.B. Critical heat flux at high mass velocities in a microchannel and surface tension measurements for R514a. Int. J. Heat Mass Transf. 2024, 227, 125575. [Google Scholar] [CrossRef]
- Kharangate, C.R.; O’Neill, L.E.; Mudawar, I. Effects of two-phase inlet quality, mass velocity, flow orientation, and heating perimeter on flow boiling in a rectangular channel: Part 2—CHF experimental results and model. Int. J. Heat Mass Transf. 2016, 103, 1280–1296. [Google Scholar] [CrossRef]
- Wu, Z.; Li, W. A new predictive tool for saturated critical heat flux in micro/mini-channels: Effect of the heated length-to-diameter ratio. Int. J. Heat Mass Transf. 2011, 54, 2880–2889. [Google Scholar] [CrossRef]
- Lv, Q.; Yan, T.; Feng, Y.; Huang, H.; Qin, J. Experimental and numerical study of flow boiling heat transfer characteristics in rectangular groove-wall microchannels. Int. J. Heat Mass Transf. 2024, 220, 124999. [Google Scholar] [CrossRef]
- Zaitsev, D.V.; Belosludtsev, V.V. Influence of channel to heater width ratio on flow boiling critical heat flux in mini- and microchannels. J. Phys. Conf. Ser. 2021, 2057, 012047. [Google Scholar] [CrossRef]
- Hu, C.; Yang, X.; Ma, Z.; Ma, X.; Feng, Y.; Wei, J. Research on heat transfer and flow distribution of parallel-configured microchannel heat sinks for arrayed chip heat dissipation. Appl. Therm. Eng. 2024, 255, 124003. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Y.; Wang, Y.; Chao, C.Y.H.; Qiu, H. Effects of non-wetting fraction and pitch distance in flow boiling heat transfer in a wettability-patterned microchannel. Int. J. Heat Mass Transf. 2022, 190, 122753. [Google Scholar] [CrossRef]
- do Nascimento, F.J.; Moreira, T.A.; Ribatski, G. Flow boiling critical heat flux of DI-water and nanofluids inside smooth and nanoporous round microchannels. Int. J. Heat Mass Transf. 2019, 139, 240–253. [Google Scholar] [CrossRef]
- Qu, W.; Mudawar, I. Measurement and correlation of critical heat flux in two-phase micro-channel heat sinks. Int. J. Heat Mass Transf. 2004, 47, 2045–2059. [Google Scholar] [CrossRef]
- Li, W.; Yang, F.; Alam, T.; Khan, J.; Li, C. Experimental and theoretical studies of critical heat flux of flow boiling in microchannels with microbubble-excited high-frequency two-phase oscillations. Int. J. Heat Mass Transf. 2015, 88, 368–378. [Google Scholar] [CrossRef]
- Agostini, B.; Revellin, R.; Thome, J.R.; Fabbri, M.; Michel, B.; Calmi, D.; Kloter, U. High heat flux flow boiling in silicon multi-microchannels—Part III: Saturated critical heat flux of R236fa and two-phase pressure drops. Int. J. Heat Mass Transf. 2008, 51, 5426–5442. [Google Scholar] [CrossRef]
- Bergles, A.E.; Kandlikar, S.G. On the Nature of Critical Heat Flux in Microchannels. J. Heat Transf. 2005, 127, 101–107. [Google Scholar] [CrossRef]
- Kuan, W.K.; Kandlikar, S.G. Experimental Study and Model on Critical Heat Flux of Refrigerant-123 and Water in Microchannels. J. Heat Transf. 2008, 130, 034503. [Google Scholar] [CrossRef]
- Singh, S.G.; Kulkarni, A.; Duttagupta, S.P.; Puranik, B.P.; Agrawal, A. Impact of aspect ratio on flow boiling of water in rectangular microchannels. Exp. Therm. Fluid Sci. 2008, 33, 153–160. [Google Scholar] [CrossRef]
- Zhang, W.; Hibiki, T.; Mishima, K.; Mi, Y. Correlation of critical heat flux for flow boiling of water in mini-channels. Int. J. Heat Mass Transf. 2006, 49, 1058–1072. [Google Scholar] [CrossRef]
- Fu, B.-R.; Lee, C.-Y.; Pan, C. The effect of aspect ratio on flow boiling heat transfer of HFE-7100 in a microchannel heat sink. Int. J. Heat Mass Transf. 2013, 58, 53–61. [Google Scholar] [CrossRef]
- Kumar, R.; Kadam, S.T. Development of New Critical Heat Flux Correlation for Microchannel Using Energy-Based Bubble Growth Model. J. Heat Transf. 2016, 138, 061502. [Google Scholar] [CrossRef]
- Devahdhanush, V.S.; Darges, S.J.; Mudawar, I.; Nahra, H.K.; Balasubramaniam, R.; Hasan, M.M.; Mackey, J.R. Flow visualization, heat transfer, and critical heat flux of flow boiling in Earth gravity with saturated liquid-vapor mixture inlet conditions—In preparation for experiments onboard the International Space Station. Int. J. Heat Mass Transf. 2022, 192, 122890. [Google Scholar] [CrossRef]
- Wang, K.; Wang, D.; Liu, X.; Cheng, S.; Wang, S.; Zhou, W.; Miwa, S.; Okamoto, K. Re-examining the input-parameters and AI strategies for Critical Heat Flux prediction. Energy 2025, 318, 134606. [Google Scholar] [CrossRef]
- Zhou, W.; Miwa, S.; Wang, H.; Okamoto, K. Assessment of the state-of-the-art AI methods for critical heat flux prediction. Int. Commun. Heat Mass Transf. 2024, 158, 107844. [Google Scholar] [CrossRef]
- Yang, J.; Rivard, H.; Zmeureanu, R. On-line building energy prediction using adaptive artificial neural networks. Energy Build. 2005, 37, 1250–1259. [Google Scholar] [CrossRef]
- Noh, H.; Lee, S.; Kim, S.-M.; Mudawar, I. Utilization of XGBoost algorithm to predict dryout incipience quality for saturated flow boiling in mini/micro-channels. Int. J. Heat Mass Transf. 2024, 231, 125827. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Li, C.; Yu, Y.; Zhou, G.; Wang, C.; Zhao, W. Temperature prediction of lithium-ion battery based on artificial neural network model. Appl. Therm. Eng. 2023, 228, 120482. [Google Scholar] [CrossRef]
- Yibo, W.; Huaishuang, S.; Jingjie, W.; Tao, S.; Min, L.; Zhiyuan, L.; Qinxin, Z. Study on artificial neural network prediction of heat transfer in vertically upward internally rifled tubes with supercritical water. Ann. Nucl. Energy 2025, 220, 111539. [Google Scholar] [CrossRef]
- Moiz, M.; Prajapat, R.; Srivastava, A. Prediction of bubble dynamics parameters in nucleate flow boiling using artificial neural networks (ANN). Int. Commun. Heat Mass Transf. 2025, 162, 108668. [Google Scholar] [CrossRef]
- Hedayat, A. Developing a robust and flexible smart tool to predict a full range Critical Heat Flux (CHF) in different LWRs by using deep learning Artificial Neural Networks (ANN) via parallel multi-processing. Prog. Nucl. Energy 2021, 142, 103985. [Google Scholar] [CrossRef]
- Qiu, Y.; Garg, D.; Zhou, L.; Kharangate, C.R.; Kim, S.-M.; Mudawar, I. An artificial neural network model to predict mini/micro-channels saturated flow boiling heat transfer coefficient based on universal consolidated data. Int. J. Heat Mass Transf. 2020, 149, 119211. [Google Scholar] [CrossRef]
- Abbasian, F.; Hadaller, G.I.; Fortman, R.A.; Snell, J.; Park, S. An Artificial Neural Network (ANN) Model to Predict Critical Heat Flux (CHF) in a CANDU Fuel Element Simulation (FES) with Various Nonuniform Axial Heat Flux Shapes and Flow Liner Creep Profiles. Nucl. Eng. Des. 2025, 432, 113736. [Google Scholar] [CrossRef]
- Qu, W.; Mudawar, I. Flow boiling heat transfer in two-phase micro-channel heat sinks––I. Experimental investigation and assessment of correlation methods. Int. J. Heat Mass Transf. 2003, 46, 2755–2771. [Google Scholar] [CrossRef]
- Li, Y.; Wu, H. Experiment investigation on flow boiling heat transfer in a bidirectional counter-flow microchannel heat sink. Int. J. Heat Mass Transf. 2022, 187, 122500. [Google Scholar] [CrossRef]
- Lee, H.; Park, I.; Mudawar, I.; Hasan, M.M. Micro-channel evaporator for space applications—1. Experimental pressure drop and heat transfer results for different orientations in earth gravity. Int. J. Heat Mass Transf. 2014, 77, 1213–1230. [Google Scholar] [CrossRef]
- Deng, D.X.; Zeng, L.; Sun, W.; Pi, G.; Yang, Y. Experimental study of flow boiling performance of open-ring pin fin microchannels. Int. J. Heat Mass Transf. 2021, 167, 120829. [Google Scholar] [CrossRef]
- Moffat, R.J. Describing the uncertainties in experimental results. Exp. Therm Fluid Sci. 1988, 1, 3–17. [Google Scholar] [CrossRef]
- Celata, G.P.; Cumo, M.; Katto, Y.; Mariani, A. Prediction of the critical heat flux in water subcooled flow boiling using a new mechanistic approach. Int. J. Heat Mass Transf. 1999, 42, 1457–1466. [Google Scholar] [CrossRef]
- Lee, C.H.; Mudawwar, I. A mechanistic critical heat flux model for subcooled flow boiling based on local bulk flow conditions. Int. J. Multiph. Flow 1988, 14, 711–728. [Google Scholar] [CrossRef]
- Hoyer, N. Calculation of dryout and post-dryout heat transfer for tube geometry. Int. J. Multiph. Flow 1998, 24, 319–334. [Google Scholar] [CrossRef]
- Okawa, T.; Kotani, A.; Kataoka, I.; Naitoh, M. Prediction of the critical heat flux in annular regime in various vertical channels. Nucl. Eng. Des. 2004, 229, 223–236. [Google Scholar] [CrossRef]
- Kalani, A.; Kandlikar, S.G. Flow patterns and heat transfer mechanisms during flow boiling over open microchannels in tapered manifold (OMM). Int. J. Heat Mass Transf. 2015, 89, 494–504. [Google Scholar] [CrossRef]
- Sudo, Y.; Miyata, K.; Ikawa, H.; Kaminaga, M.; Ohkawara, M. Experimental Study of Differences in DNB Heat Flux between Upflow and Downflow in Vertical Rectangular Channel. J. Nucl. Sci. Technol. 1985, 22, 604–618. [Google Scholar] [CrossRef]
- Miglani, A.; Weibel, J.A.; Garimella, S.V. Measurement of flow maldistribution induced by the Ledinegg instability during boiling in thermally isolated parallel microchannels. Int. J. Multiph. Flow 2021, 139, 103644. [Google Scholar] [CrossRef]
- Sudo, Y.; Kaminaga, M. A New CHF Correlation Scheme Proposed for Vertical Rectangular Channels Heated From Both Sides in Nuclear Research Reactors. J. Heat Transf. 1993, 115, 426–434. [Google Scholar] [CrossRef]
- Katto, Y.; Ohno, H. An improved version of the generalized correlation of critical heat flux for the forced convective boiling in uniformly heated vertical tubes. Int. J. Heat Mass Transf. 1984, 27, 1641–1648. [Google Scholar] [CrossRef]
Properties | Value |
---|---|
Fluid Density, kg/m3 | 736 |
Gas Density, kg/m3 | 1.63 |
Viscosity, Pa·s | 4.42 × 10−4 |
Fluid Specific heat, J/(kg·K) | 2930 |
Fluid Thermal conductivity, W/(m·K) | 0.15 |
Latent heat of vaporization, KJ/kg | 850.1 |
Surface tension, N/m | 0.0174 |
Items | De | Wch/mm | Hch/mm | β | A/mm2 | Nch | Ww/mm |
---|---|---|---|---|---|---|---|
HD1# | 2.0 | 2.0 | 2.0 | 1 | 4 | 7 | 2 |
HD2# | 1.3 | 1.0 | 2.0 | 2 | 2 | 8 | 2 |
HD3# | 1.0 | 1.0 | 1.0 | 1 | 1 | 14 | 1 |
HD4# | 0.7 | 0.5 | 1.0 | 2 | 0.5 | 17 | 0.6 |
HD5# | 0.5 | 0.5 | 0.5 | 1 | 0.25 | 28 | 0.6 |
Variable | Uncertainties |
---|---|
Temperature | ±0.1 °C |
Pressure | ±0.5 Pa |
Mass Flow Rate | ±1.5% |
Mass Flux | ±1.6% |
Heat Flux | ±4.82% |
Thermodynamic Equilibrium Quality | ±2.41% |
Heat Transfer Coefficient | ±7.53% |
Models | Year | Predictive Correlations | MAE | ||
---|---|---|---|---|---|
De ≥ 1.0 mm | De < 1.0 mm | All | |||
Sudo [53] | 1993 | 41.73% | 136.39% | 58.94% | |
Katto–Ohno [54] | 1984 | 19.28% | 87.01% | 31.60% | |
Qu–Mudawar [21] | 2004 | 72.96% | 148.69% | 86.73% | |
Zhang–Hibiki [27] | 2006 | 88.23% | 45.45% | 80.45% |
ANN Cascade Structure | MAE | R2 Score | ||
---|---|---|---|---|
Training | Testing | Total | ||
ANN [4,100,50,1] | 13.98% | 18.1% | 13.30% | 0.85 |
ANN [4,100,50,25,25,1] | 10.15% | 14.43% | 9.36% | 0.85 |
ANN [4,100,50,25,12,6,3,1] | 9.24% | 12.88% | 8.93% | 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, C.; Luo, X.; Sun, Z.; Zhang, J.; Fan, Y.; Liu, D. Investigation on Critical Heat Flux of Flow Boiling in Rectangular Microchannels: A Parametric Study and Assessment of New Prediction Method. Energies 2025, 18, 4866. https://doi.org/10.3390/en18184866
Deng C, Luo X, Sun Z, Zhang J, Fan Y, Liu D. Investigation on Critical Heat Flux of Flow Boiling in Rectangular Microchannels: A Parametric Study and Assessment of New Prediction Method. Energies. 2025; 18(18):4866. https://doi.org/10.3390/en18184866
Chicago/Turabian StyleDeng, Cong, Xiaoping Luo, Zhiwei Sun, Jinxin Zhang, Yijie Fan, and Donglin Liu. 2025. "Investigation on Critical Heat Flux of Flow Boiling in Rectangular Microchannels: A Parametric Study and Assessment of New Prediction Method" Energies 18, no. 18: 4866. https://doi.org/10.3390/en18184866
APA StyleDeng, C., Luo, X., Sun, Z., Zhang, J., Fan, Y., & Liu, D. (2025). Investigation on Critical Heat Flux of Flow Boiling in Rectangular Microchannels: A Parametric Study and Assessment of New Prediction Method. Energies, 18(18), 4866. https://doi.org/10.3390/en18184866