Development and Characterization of High-Strength Coalbed Fracturing Proppant Based on Activated Carbon Skeleton
Abstract
1. Introduction
2. Experimental Design
2.1. Experimental Materials
2.2. Experimental Instruments
2.3. Proppant Preparation Process
2.4. Optimization of Preparation Conditions
- KCP-AC: Conductivity of CP-AC proppant pack (mD·cm), tested by FCES-100 conductivity meter (Section 2.2) under 30 °C and 50 MPa;
- KQuartz Sand: Conductivity of quartz sand proppant pack (10.44 mD·cm) under the same testing.
2.5. Characterization Methods
3. Results and Discussion
3.1. Structural Characterization
3.1.1. FTIR Analysis
3.1.2. BET Analysis
3.1.3. SEM Analysis and Particle Size Distribution
3.1.4. Thermogravimetric Analysis (TGA)
3.1.5. Wettability Analysis
3.2. Mechanical Properties
3.2.1. Single-Particle Compressive Strength
3.2.2. Crushing Rate
3.3. Conductivity
3.4. Gas Adsorption–Desorption Behavior and Mechanism Analysis
3.4.1. Methane Desorption Promotion Effect
3.4.2. Nitrogen Adsorption Behavior and Competitive Interaction with Methane
3.5. Corrosion Resistance
3.6. Proppant Transport Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, Q.; Huang, Z.; Huang, H.; Chen, Q.; Ling, X.; Xin, F.; Kong, X. An Experimental Study on the Impact of the Particle Size and Proportion of Composite Proppant on the Conductivity of Propped Fractures in Coalbed Methane Reservoirs following Pulverized Coal Fines Infiltration. Processes 2023, 11, 2205. [Google Scholar] [CrossRef]
- Huang, J.; Chen, J.; Lv, L.; Yu, Z.; Yao, W.; Cheng, H.; Niu, W.; Wang, J.; Zhang, J.; Qi, H. Design and Verification of a Wearable Micro-Capacitance Test System for POC Biosensing. IEEE Trans. Instrum. Meas. 2025, 74, 2007411. [Google Scholar]
- Liu, Y.; Zhou, L.; Wan, X.; Tang, Y.; Liu, Q.; Li, W.; Liao, J. Synthesis and Characterization of a Temperature-Sensitive Microcapsule Gelling Agent for High-Temperature Acid Release. ACS Omega 2024, 9, 20849–20858. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liu, W. Proppant embedding-based optimal design method for fracturing coalbed methane wells in Qingshui basin. Sci. Rep. 2025, 15, 8508. [Google Scholar] [CrossRef] [PubMed]
- Hao, H.; Yao, E.; Pan, L.; Chen, R.; Wang, Y.; Xiao, H. Exploring heterogeneous drivers and barriers in MaaS bundle subscriptions based on the willingness to shift to MaaS in one-trip scenarios. Transp. Res. Part A Policy Pract. 2025, 199, 104525. [Google Scholar] [CrossRef]
- Kurnia, J.C.; Xu, P.; Sasmito, A.P. A novel concept of enhanced gas recovery strategy from ventilation air methane in underground coal mines—A computational investigation. J. Nat. Gas Sci. Eng. 2016, 35, 661–672. [Google Scholar] [CrossRef]
- Dai, S.F.; Xie, P.P.; French, D.; Ward, C.R.; Graham, I.T.; Yan, X.Y.; Guo, W.M. The occurrence of buddingtonite in super-high-organic-sulphur coals from the Yishan Coalfield, Guangxi, southern China. Int. J. Coal Geol. 2018, 195, 347–361. [Google Scholar] [CrossRef]
- Wu, K.; Zou, J.; Jiao, Y. Focal Mechanism of Strong Ground Seismicity Induced by Deep Coal Mining. Rock Mech. Rock Eng. 2023, 56, 779–795. [Google Scholar] [CrossRef]
- Zeng, Q.S.; Wang, Z.M.; Liu, L.Q.; Ye, J.P.; Brian, J. Modeling CH4 Displacement by CO2 in Deformed Coalbeds during Enhanced Coalbed Methane Recovery. Energy Fuels 2018, 32, 1942–1955. [Google Scholar] [CrossRef]
- Dai, S.F.; Xie, P.P.; Ward, C.R.; Yan, X.Y.; Guo, W.M.; French, D.; Ian, T. Graham. Anomalies of rare metals in Lopingian super-high-organic-sulfur coals from the Yishan Coalfield, Guangxi, China. Ore Geol. Rev. 2017, 88, 235–250. [Google Scholar] [CrossRef]
- Guo, X.; Yan, Q.; Wang, A. Evaluation of Relative Permeability in Coalbed Methane Reservoirs Based on Production Data: A Case Study in Qinshui Basin, China. Nat. Resour. Res. 2019, 28, 187–198. [Google Scholar] [CrossRef]
- Office, J.E. Acknowledgement to Reviewers of Journal of Marine Science and Engineering in 2017. J. Mar. Sci. Eng. 2018, 6, 8. [Google Scholar] [CrossRef]
- Colin, R.W.; Ken, R.; David, F. Dalway John (Dal) Swaine: 1920–2013. Int. J. Coal Geol. 2013, 113, 60–62. [Google Scholar]
- Li, J.; Wen, M.; Yang, J.; Liu, Y.; Jiang, Z.; Chen, J. Synthesis and analysis of magnetic nanoparticles within foam matrix for foam drainage gas production. Geoenergy Sci. Eng. 2024, 238, 212887. [Google Scholar] [CrossRef]
- Fu, X.Y.; Zhao, C.P.; Lun, Z.M.; Wang, H.T.; Wang, M.; Zhang, D.F. Influences of controlled microwave field radiation on pore structure, surface chemistry and adsorption capability of gas-bearing shales. Mar. Pet. Geol. 2021, 130, 105134. [Google Scholar] [CrossRef]
- Zhou, Y.; Xia, H.; Yu, D.; Cheng, J.; Li, J. Outlier detection method based on high-density iteration. Inf. Sci. 2024, 662, 120286. [Google Scholar] [CrossRef]
- Gu, F.; Chalaturnyk, R.J. Sensitivity Study of Coalbed Methane Production with Reservoir and Geomechanic Coupling Simulation. J. Can. Pet. Technol. 2005, 44, 23–32. [Google Scholar] [CrossRef]
- Hu, S.Y.; Chen, Y.B.; Hao, Y.X.; Chen, Z.Y.; Feng, G.R.; Li, G.F.; Guan, S.W.; Zhang, X.T.; Li, S.Y. Experimental study of the effects of fine retention on fracturing proppant permeability in coalbed methane reservoirs. J. Nat. Gas Sci. Eng. 2020, 83, 1875–5100. [Google Scholar] [CrossRef]
- Shen, S.C.; Fang, Z.M.; Li, X.C.; Jiang, Q.; Shen, H.M.; Shi, L. Enhanced Coalbed Methane Recovery from Lignite Using CO2 and N2. Energy Fuels 2025, 39, 10394–10409. [Google Scholar] [CrossRef]
- Liu, H.; Li, Z.; Wang, H. Numerical Simulation Investigation of N2 Injection for Enhanced Coalbed Methane Recovery. Arab. J. Sci. Eng. 2025, 50, 4661–4672. [Google Scholar] [CrossRef]
- Guo, J.H.; Zhang, Z.S.; Guo, G.S.; Xia, H.; Zhu, L.Q.; Zhang, C.M.; Tang, X.; Zhou, X.Q.; Zhang, Y.N.; Wang, C. Evaluation of Coalbed Methane Content by Using Kernel Extreme Learning Machine and Geophysical Logging Data. Geofluids 2022, 2022, 3424367. [Google Scholar] [CrossRef]
- Yin, T.T.; Zhang, J.J.; Liu, D.M.; Cai, Y.D.; Dong, Z.T.; Zhang, L. Application of molecular simulation in coalbed methane reservoirs: A systematic review. Unconv. Resour. 2022, 2, 124–132. [Google Scholar] [CrossRef]
- Azarpour, A.; Mohammadzadeh, O.; Rezaei, N.; Zendehboudi, S. Current status and future prospects of renewable and sustainable energy in North America: Progress and challenges. Energy Convers. Manag. 2022, 269, 115945. [Google Scholar] [CrossRef]
- Flores, R.M. Coalbed methane: From hazard to resource. Int. J. Coal Geol. 1998, 35, 3–16. [Google Scholar] [CrossRef]
- Liu, G.; Tang, R.; Mu, C.; Liu, X.; Zhang, J. Physical Properties of High-Rank Coal Reservoirs and the Impact on Coalbed Methane Production. Processes 2024, 12, 1754. [Google Scholar] [CrossRef]
- Alzanam, A.A.; Ishtiaq, U.; Muhsan, A.S.; Mohamed, N.M. A Multiwalled Carbon Nanotube-Based Polyurethane Nanocomposite-Coated Sand/Proppant for Improved Mechanical Strength and Flowback Control in Hydraulic Fracturing Applications. ACS Omega 2021, 6, 20768–20778. [Google Scholar] [CrossRef] [PubMed]
- Alzanam, A.A.; Muhsan, A.S.; Abdulelah, H.; Mohamed, D.; Iglauer, S. Novel Nanocomposite Coated Proppants for Enhanced Scale Inhibition Lifetime in Tight Shale Formations. Energy Fuel 2022, 36, 14136–14147. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, Q.; Liu, C.; Jia, H.; Sang, G.; Wu, D.; Li, K.; Wang, Q. The Gas Production Characteristics of No. 3 Coal Seam Coalbed Methane Well in the Zhengbei Block and the Optimization of Favorable Development Areas. Processes 2024, 12, 2018. [Google Scholar] [CrossRef]
- Zhang, B.F.; Chen, J.; Sha, J.D.; Zhang, S.; Zeng, J.; Chen, P.; Yao, D.X.; Liu, W.Z.; Wang, X.M.; Zhang, P.S.; et al. Geochemistry of coal thermally-altered by igneous intrusion: A case study from the Pansan Coal Mine of Huainan Coalfield, Anhui, Eastern China. J. Geochem. Explor. 2020, 213, 106532. [Google Scholar] [CrossRef]
- Fu, X.X.; Lun, Z.M.; Zhao, C.P.; Zhou, X.; Wang, H.T.; Zhou, X.T.; Xu, Y.; Zhang, H.; Zhang, D.F. Influences of controlled microwave field irradiation on physicochemical property and methane adsorption and desorption capability of coals: Implications for coalbed methane (CBM) production. Fuel 2021, 301, 121022. [Google Scholar] [CrossRef]
- Tasque, J.E.; Vega, I.N.; Marco, S.; Raffo, P.A.; D’ACcorso, N.B. Ultra-light weight proppant: Synthesis, characterization, andperformance of new proppants. J. Nat. Gas Sci. Eng. 2021, 85, 103717. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption isotherm models: Classification, physical meaning, applicationandsolving method. Chemosphere 2020, 258, 127279. [Google Scholar] [CrossRef]
- Burhan, M.; Shahzad, M.K.; Ng, K.C. Energy distribution function based universal adsorption isotherm model for all types of isotherm. Int. J. Low-Carbon Technol. 2018, 13, 292–297. [Google Scholar] [CrossRef]
- Yang, D.; Cui, G.; Elsworth, D.; Wang, C.; Cheng, W.; Yang, C.; Chen, T. Damage-Based Microscale Model Explains Observed Two-Stage Shale Gas Depletion Profiles at Reservoir Scale. Energy Fuels 2025, 39, 13488–13504. [Google Scholar] [CrossRef]
- Cheng, W.; Cui, G.; Elsworth, D.; Tan, Y.; Pan, Z.; Guo, Y.; Zhang, Y. Constrained study of nanoindentation-based upscaling of mechanical properties of shales. Acta Geotech. 2025, 20, 4515–4533. [Google Scholar] [CrossRef]
- Cheng, W.; Cui, G.; Tan, Y.; Elsworth, D.; Wang, C.; Yang, C.; Chen, T.; Jiang, C. A multi-layer nanocased model to explain the U-shaped evolution of shale gas permeability at constant confining pressure. Fuel 2024, 359, 130478. [Google Scholar] [CrossRef]
- Lu, W.; Wang, J.; Wang, T.; Zhang, K.; Jiang, X.; Zhao, H. Visual style prompt learning using diffusion models for blind face restoration. Pattern Recognit. 2025, 161, 111312. [Google Scholar] [CrossRef]
- Cheng, W.; Guo, Y.; Cui, G.; Elsworth, D.; Tan, Y.; Pan, Z. Impact of micro-scale characteristics of shale reservoirs on gas depletion behavior: A microscale discrete model. Adv. Geo-Energy Res. 2025, 15, 143–157. [Google Scholar] [CrossRef]
- Cui, G.; Tan, Y.; Chen, T.; Feng, X.; Elsworth, D.; Pan, Z.; Wang, C. Multidomain two-phase flow model to study the impacts of hydraulic fracturing on shale gas production. Energy Fuels 2020, 34, 4273–4288. [Google Scholar] [CrossRef]
- Cui, G.; Feng, X.; Pan, Z.; Chen, T.; Liu, J.; Elsworth, D.; Tan, Y.; Wang, C. Impact of shale matrix mechanical interactions on gas transport during production. J. Pet. Sci. Eng. 2020, 184, 106524. [Google Scholar] [CrossRef]
- Cui, G.; Liu, J.; Wei, M.; Shi, R.; Elsworth, D. Why shale permeability changes under variable effective stresses: New insights. Fuel 2018, 213, 55–71. [Google Scholar] [CrossRef]
- Zhang, J.; Qi, H.; Wu, J.; Mao, X.; Zhang, H.; Amin, N.; Xu, F.; Dong, C.; Wang, C.; Wang, P.; et al. Disposable peptidoglycan-specific biosensor for noninvasive real-time detection of broad-spectrum Gram-positive bacteria in exhaled breath condensates. Anal. Chem. 2024, 96, 9817–9825. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Shi, W.; Tian, X.; Li, J.; Zhao, B.; Wang, S.; Tan, J. A plane stress measurement method for CFRP material based on array LCR waves. NDT E Int. 2025, 151, 103318. [Google Scholar] [CrossRef]
- ISO 13503-2:2024; Oil and Gas Industries Including Lower Carbon Energy—Completion Fluids and Materials. International Organization for Standardization: Geneva, Switzerland, 2024.
Functional Group | Characteristic Wavenumber Range (cm−1) | Change in Spectral Intensity |
---|---|---|
(-OH) | 3400–3600 | Broad absorption band |
(Si-O-Si) | 1000–1050 | Varies with silicon–aluminum molar ratio (3:1 to 5:1); reaches maximum at 650 °C calcination |
(Al-O-Si) | 700–750 | Relatively weak |
(C=O) | 1650–1700 | Distinct small peak emerges after nitric acid pretreatment (intensity increases) |
Test No. | Activated Carbon Particle Size (Mesh) | Si/Al Molar Ratio | Calcination Temperature (°C) | Holding Time (h) | Single-Particle Compressive Strength (N) |
---|---|---|---|---|---|
1 | 20-30 (A1) | 3:1 (B1) | 600 (C1) | 1 (D1) | 46.25 (minimum value) |
2 | 20-30 (A1) | 4:1 (B2) | 650 (C2) | 2 (D2) | 48.5 |
3 | 20-30 (A1) | 5:1 (B3) | 700 (C3) | 3 (D3) | 47.0 |
4 | 30-40 (A2) | 3:1 (B1) | 650 (C2) | 3 (D3) | 50.0 |
5 | 30-40 (A2) | 4:1 (B2) | 700 (C3) | 1 (D1) | 52.0 |
6 | 30-40 (A2) | 5:1 (B3) | 600 (C1) | 2 (D2) | 49.0 |
7 | 20-30 (A1) | 3:1 (B1) | 700 (C3) | 2 (D2) | 47.5 |
8 | 20-30 (A1) | 4:1 (B2) | 600 (C1) | 3 (D3) | 48.0 |
9 | 30-40 (A2) | 5:1 (B3) | 650 (C2) | 1 (D1) | 51.0 |
Optimal Condition | 30-40 (A2) | 4:1 (B2) | 650 (C2) | 2 (D2) | 55.5 (maximum value) |
System | Van der Waals Energy (kcal/mol) | Hydrogen Bond Energy (kcal/mol) | Total Adsorption Energy (kcal/mol) |
---|---|---|---|
Methane–Coal Matrix | −28.6 ± 1.2 | −3.2 ± 0.5 | −31.8 ± 1.5 |
Methane-CP-AC | −23.4 ± 0.9 | −5.7 ± 0.3 | −29.1 ± 1.1 |
Parameter | Coal Matrix | CP-AC Porous Structure | Enhancement Ratio |
---|---|---|---|
Diffusion Coefficient (m2/s) | 1.73 × 10−9 ± 0.08 × 10−9 | 2.30 × 10−9 ± 0.11 × 10−9 | 32.9% |
Mean Square Displacement (MSD) at 500 ps | 65.2 ± 3.1 Å2 | 86.6 ± 4.2 Å2 | 32.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Guo, C.; Gong, Q.; Li, G.; Zhuo, X.; Zhuo, P.; Chen, C. Development and Characterization of High-Strength Coalbed Fracturing Proppant Based on Activated Carbon Skeleton. Energies 2025, 18, 4854. https://doi.org/10.3390/en18184854
Wang K, Guo C, Gong Q, Li G, Zhuo X, Zhuo P, Chen C. Development and Characterization of High-Strength Coalbed Fracturing Proppant Based on Activated Carbon Skeleton. Energies. 2025; 18(18):4854. https://doi.org/10.3390/en18184854
Chicago/Turabian StyleWang, Kai, Chenye Guo, Qisen Gong, Gen Li, Xiaoyue Zhuo, Peng Zhuo, and Chaoxian Chen. 2025. "Development and Characterization of High-Strength Coalbed Fracturing Proppant Based on Activated Carbon Skeleton" Energies 18, no. 18: 4854. https://doi.org/10.3390/en18184854
APA StyleWang, K., Guo, C., Gong, Q., Li, G., Zhuo, X., Zhuo, P., & Chen, C. (2025). Development and Characterization of High-Strength Coalbed Fracturing Proppant Based on Activated Carbon Skeleton. Energies, 18(18), 4854. https://doi.org/10.3390/en18184854