Evaluation of Tuned Mass Damper for Offshore Wind Turbine Using Coupled Fatigue Analysis Method
Abstract
1. Introduction
2. The Framework for the Coupled Fatigue Analysis of an Offshore Wind Turbine
2.1. Brief Conceptual Explanation of the Proposed Coupled Fatigue Framework
2.2. Detailed Workflow of the Coupled Fatigue Analysis Framework
2.2.1. Determination of Fatigue Load Cases
2.2.2. Fully Coupled Time-Domain Simulations of the OWT
2.2.3. Hotspot Stress Calculation
2.2.4. The Coupled Fatigue Damage
2.3. Design Load Cases for TMD Parameters
3. Wind Turbines and Marine Environmental Parameters
3.1. Wind Turbine Parameters
3.2. Marine Environmental Parameters
3.3. Validation of Wind–Wave Joint Distribution
4. The Validation of the Coupled Fatigue Analysis Method
4.1. The Coupled Fatigue Load Cases
4.2. The Comparison with the Direct Time-Domain Fatigue Damage
4.3. Comparison with the Spectral Fatigue Method
5. Evaluation of Tuned Mass Damper for Offshore Wind Turbine
5.1. TMD Parameters
5.2. Hotspot Stress Analysis
5.3. Long-Term Coupled Fatigue Damage Analysis
5.4. Limitations of the Proposed Coupled Fatigue Analysis Method
6. Conclusions
- Significant discrepancies were observed in time-domain-coupled long-term cumulative fatigue damage across joint types. In the splash zone near the mean sea level, the JD1 (K-type) and JD2 (X-type) joints exhibited substantially higher cumulative damage than the submerged JD3 (Y-type) joints, with JD2 demonstrating the maximum cumulative damage (0.183) during the operational period.
- TMD implementation minimally altered critical hotspot locations or fundamental trends in stress amplitude distribution (hotspot stress, equivalent fatigue stress) and short-/long-term fatigue accumulation patterns across all joints.
- However, the TMD effectively reduced fatigue accumulation rates at hotspot locations under long-term wind–wave loading, achieving notable life extension for the K-, X-, and Y-type joints. The K-joint (JD1) exhibited the most significant improvement, with a 53% fatigue life extension during the operational period.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vasdev, A. 2H 2023 LCOE Update: An Uneven Recovery. 2023. Available online: https://about.bnef.com/insights/commodities/2h-2023-lcoe-update-an-uneven-recovery/ (accessed on 6 August 2025).
- Williams, R.; Zhao, F. Global Offshore Wind Report 2024; GWEC: Brussels, Belgium, 2024. [Google Scholar]
- Taylor, M. Renewable Power Generation Cost Trends to 2022; IRENA: Abu Dhabi, United Arab Emirates, 2023. [Google Scholar]
- Chen, T.; Li, W.; Deng, R.; Zuo, H. Fatigue analysis of offshore wind turbines with soil-structure interaction and various pile types. Ocean Eng. 2024, 314, 119786. [Google Scholar] [CrossRef]
- Mohammadi, S.F.; Galgoul, N.S.; Starossek, U.; Videiro, P.M. An efficient time domain fatigue analysis and its comparison to spectral fatigue assessment for an offshore jacket structure. Mar. Struct. 2016, 49, 97–115. [Google Scholar] [CrossRef]
- Dong, W.; Moan, T.; Gao, Z. Long-term fatigue analysis of multi-planar tubular joints for jacket-type offshore wind turbine in time domain. Eng. Struct. 2011, 33, 2002–2014. [Google Scholar] [CrossRef]
- Abdallah, A.; William, M.A.; Moharram, N.A.; Zidane, I.F. Boosting H-Darrieus vertical axis wind turbine performance: A CFD nvestigation of J-Blade aerodynamics. Results Eng. 2025, 27, 106358. [Google Scholar] [CrossRef]
- Meng, H.; Liu, Y.; Tian, D.; Kai, L.; Zhang, H. Analysis of platform motion effects on fatigue loads and aerodynamic unsteadiness in 15 MW novel floating offshore wind turbines with transient impact. Ocean Eng. 2025, 340, 122359. [Google Scholar] [CrossRef]
- Li, T.; Yang, Q.; Zhang, X.; Ma, Y. Efficient fatigue damage estimation of offshore wind turbine foundation under wind-wave actions. J. Constr. Steel Res. 2024, 221, 108903. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, B.; Wang, D.; Xu, C. Fatigue damage analysis method of offshore wind turbine foundation. Ocean Eng. 2024, 302, 117618. [Google Scholar] [CrossRef]
- Wang, T.; Li, D.; Greaves, D.; Hann, M.; Zhu, K.; Li, Y.; Gong, H.; Tao, J.; Cao, F.; Shi, H. Numerical modelling and PTO damping optimization of an IEA-15-MW-VolturnUS-WEC hybrid system in real sea states. Energy 2025, 330, 136693. [Google Scholar] [CrossRef]
- Chan, P. Robustness and effectiveness assessment for optimal distribution of multiple tuned mass dampers for offshore wind turbines with varying sea level. Mech. Based Des. Struct. Mach. 2025, 1–27. [Google Scholar] [CrossRef]
- Han, D.; Li, X.; Wang, W.; Su, X. Vibration suppression performance comparison of floating offshore wind turbines using a tuned liquid column damper and a tuned mass damper. Ocean Eng. 2025, 330, 121285. [Google Scholar] [CrossRef]
- Zhang, J.; Liang, X.; Wang, L.; Wang, B.; Wang, L. The influence of tuned mass dampers on vibration control of monopile offshore wind turbines under wind-wave loadings. Ocean Eng. 2023, 278, 114394. [Google Scholar] [CrossRef]
- Lu, D.; Wang, W.; Li, X. Experimental Study on Dynamic Characteristics and Vibration Mitigation Strategy of Jacket Offshore Wind Turbines Under Typical Normal Operating and Mechanical Fault Conditions. IEEE J. Ocean. Eng. 2025, 50, 2165–2181. [Google Scholar] [CrossRef]
- Bitner-Gregersen, E.M. Joint met-ocean description for design and operations of marine structures. Appl. Ocean Res. 2015, 51, 279–292. [Google Scholar] [CrossRef]
- Eckert-Gallup, A.C.; Sallaberry, C.J.; Dallman, A.R.; Neary, V.S. Application of principal component analysis (PCA) and improved joint probability distributions to the inverse first-order reliability method (I-FORM) for predicting extreme sea states. Ocean Eng. 2016, 112, 307–319. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Wu, D. Lifetime Reliability Evaluation of Spar Type Floating Wind Turbine Subjected to Combined Wind-Wave Action. In Proceedings of the Wind Energy Symposium, American Institute of Aeronautics and Astronautics, Kissimmee, FL, USA, 8–12 January 2018. [Google Scholar]
- Dong, S.; Wang, N.; Liu, W.; Guedes Soares, C. Bivariate maximum entropy distribution of significant wave height and peak period. Ocean Eng. 2013, 59, 86–99. [Google Scholar] [CrossRef]
- Silva-González, F.; Heredia-Zavoni, E.; Montes-Iturrizaga, R. Development of environmental contours using Nataf distribution model. Ocean Eng. 2013, 58, 27–34. [Google Scholar] [CrossRef]
- Wist, H.T.; Myrhaug, D.; Rue, H. Statistical properties of successive wave heights and successive wave periods. Appl. Ocean Res. 2004, 26, 114–136. [Google Scholar] [CrossRef]
- Masina, M.; Lamberti, A.; Archetti, R. Coastal flooding: A copula based approach for estimating the joint probability of water levels and waves. Coast. Eng. 2015, 97, 37–52. [Google Scholar] [CrossRef]
- Montes-Iturrizaga, R.; Heredia-Zavoni, E. Environmental contours using copulas. Appl. Ocean Res. 2015, 52, 125–139. [Google Scholar] [CrossRef]
- Montes-Iturrizaga, R.; Heredia-Zavoni, E. Assessment of uncertainty in environmental contours due to parametric uncertainty in models of the dependence structure between metocean variables. Appl. Ocean Res. 2017, 64, 86–104. [Google Scholar] [CrossRef]
- Zhang, Y.; Beer, M.; Quek, S.T. Long-term performance assessment and design of offshore structures. Comput. Struct. 2015, 154, 101–115. [Google Scholar] [CrossRef]
- Johannessen, K.; Meling, T.S.; Haver, S. Joint Distribution For Wind And Waves In the Northern North Sea. In Proceedings of the ISOPE International Ocean and Polar Engineering Conference, Stavanger, Norway, 17–22 June 2001. [Google Scholar]
- IEC 61400-3; Wind Turbines. Part 3: Design Requirements for Offshore Wind Turbines. IEC: Geneva, Switzerland, 2009.
- DNVGL-RP-C203; Fatigue Design of Offshore Steel Structures. DNV: Oslo, Norway, 2016.
- Frendahl, M.; Rychlik, I. Rainflow analysis: Markov method. Int. J. Fatigue 1993, 15, 265–272. [Google Scholar] [CrossRef]
- Wang, W.; Li, X.; Zhao, H.; Wang, B.; Li, Y. Vibration control of a pentapod offshore wind turbine under combined seismic wind and wave loads using multiple tuned mass damper. Appl. Ocean Res. 2020, 103, 102254. [Google Scholar] [CrossRef]
- Bak, C.; Zahle, F.; Bitsche, R.; Kim, T.; Yde, A.; Henriksen, L.C.; Hansen, M.H.; Gaunaa, M.; Natarajan, A. The DTU 10-MW Reference Wind Turbine; DTU Wind Energy: Fredericia, Denmark, 2013. [Google Scholar]
- Efthymiou, M. Development of SCF formulae and generalized influence functions for use in fatigue analysis. In Proceedings of the Offshore Technology Conference, Tokyo, Japan, 18–20 October 1988. [Google Scholar]
Parameter | Units | Value |
---|---|---|
Turbine rating | MW | 10.0 |
Cut-in, rated wind turbine speed | rpm | 6.9, 9.6 |
Cut-in, rated cut-out velocity | m/s | 4.0, 11.4, 25.0 |
Rotor diameter | m | 178.3 |
Hub height | m | 135.0 |
Tower base location | m | 20.5 |
Parameter | Units | Value |
---|---|---|
Annual average wind speed | m/s | 10.0 |
Mean sea level | m | 0.37 |
Maximum significant wave height (1 in 2 year) | m | 8.42 |
Maximum peak period (1 in 2 year) | s | 12.52 |
Distributions | Parameter | Value |
---|---|---|
Marginal Uw | 1.864, 7.992 | |
Conditional Hs given Uw | 1.179, 0.005, 1.516 | |
0.346, 0.002, 2.260 | ||
Conditional Tp given Uw and Hs | –0.003, 1.000 | |
3.449, 1.520, 0.796 | ||
0.664, 9.337, 0.488 | ||
0.001, 0.248, –0.543 |
Empirical Quantiles | Theoretical Quantiles | Observed Quantiles | ||||
---|---|---|---|---|---|---|
Uw | Hs | Tp | Uw | Hs | Tp | |
1% | 5.000 | 0.250 | 2.500 | 4.135 | 0.246 | 2.378 |
10% | 7.000 | 0.250 | 3.500 | 6.360 | 0.340 | 3.482 |
50% | 15.000 | 1.000 | 5.500 | 14.895 | 1.096 | 5.363 |
90% | 21.000 | 2.750 | 6.500 | 20.571 | 2.800 | 6.902 |
99% | 23.000 | 4.450 | 8.500 | 23.698 | 4.556 | 8.615 |
Computing Method | Long-Term Fatigue Damage | Fatigue Life (Year) |
---|---|---|
Linear superposition method | 3.99 × 10−1 | 62.7 |
Coupled fatigue method | 5.14 × 10−1 | 48.5 |
Spectral fatigue method | 7.65 × 10−1 | 32.7 |
Parameter | Units | Value |
---|---|---|
TMD Location | - | Nacelle |
Mass Ratio | - | 1% |
Frequency | Hz | 0.256 |
Mass | kg | 27,676.676 |
Stiffness | N/m | 61,423.677 |
Damping | N/ms−1 | 4123.109 |
Tubular Joints | JD1 (M1/M2) | JD2 (M3/M4) | JD3 |
---|---|---|---|
0.595 | 0.974 | 0.522 | |
0.5 | 0.714 | 0.692 | |
10.5 | 10.857 | 10.928 | |
25 | 19.737 | 15.217 | |
0.089 | - | - |
Key Joints | Range | Standard Deviation | ||
---|---|---|---|---|
Without TMD | With TMD | Without TMD | With TMD | |
JD1M1N5 (K-joint) | 34.3 | 26.5 | 3.48 | 3.23 |
JD1M2N1 (K-joint) | 24.4 | 20.0 | 2.57 | 2.30 |
JD2M3N4 (X-joint) | 54.2 | 42.5 | 5.34 | 4.79 |
JD2M4N5 (X-joint) | 73.8 | 66.7 | 9.27 | 8.77 |
JD3N7 (Y-joint) | 8.94 | 8.94 | 0.88 | 0.82 |
Key Joints | Damage Equivalent Stress | Fatigue Damage | ||
---|---|---|---|---|
Without TMD | With TMD | Without TMD | With TMD | |
JD1M1N5 (K-joint) | 5.62 | 4.90 | 1.68 × 10−6 | 1.11 × 10−6 |
JD1M2N1 (K-joint) | 4.24 | 3.70 | 1.11 × 10−6 | 7.46 × 10−7 |
JD2M3N4 (X-joint) | 8.91 | 7.80 | 2.96 × 10−6 | 1.98 × 10−6 |
JD2M4N5 (X-joint) | 12.80 | 11.50 | 3.76 × 10−6 | 2.83 × 10−6 |
JD3N7 (Y-joint) | 1.84 | 1.74 | 5.86 × 10−8 | 4.97 × 10−8 |
Tubular Joints | Long-Term Fatigue Damage | Fatigue Life (Year) | ||
---|---|---|---|---|
Without TMD | With TMD | Without TMD | With TMD | |
JD1 (K-joint) | 9.50 × 10−2 | 6.19 × 10−2 | 2.63 × 102 | 4.03 × 102 |
JD2 (X-joint) | 1.83 × 10−1 | 1.27 × 10−1 | 1.37 × 102 | 1.97 × 102 |
JD3 (Y-joint) | 5.55 × 10−3 | 4.68 × 10−3 | 4.50 × 103 | 5.33 × 103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, Y.; Wu, X.; Wang, B.; Zhang, Y.; Wang, W.; Li, X. Evaluation of Tuned Mass Damper for Offshore Wind Turbine Using Coupled Fatigue Analysis Method. Energies 2025, 18, 4788. https://doi.org/10.3390/en18184788
Lai Y, Wu X, Wang B, Zhang Y, Wang W, Li X. Evaluation of Tuned Mass Damper for Offshore Wind Turbine Using Coupled Fatigue Analysis Method. Energies. 2025; 18(18):4788. https://doi.org/10.3390/en18184788
Chicago/Turabian StyleLai, Yongqing, Xinyun Wu, Bin Wang, Yu Zhang, Wenhua Wang, and Xin Li. 2025. "Evaluation of Tuned Mass Damper for Offshore Wind Turbine Using Coupled Fatigue Analysis Method" Energies 18, no. 18: 4788. https://doi.org/10.3390/en18184788
APA StyleLai, Y., Wu, X., Wang, B., Zhang, Y., Wang, W., & Li, X. (2025). Evaluation of Tuned Mass Damper for Offshore Wind Turbine Using Coupled Fatigue Analysis Method. Energies, 18(18), 4788. https://doi.org/10.3390/en18184788