Discharge-Based DC-Bus Voltage Link Capacitor Monitoring with Repetitive Recursive Least Squares Method for Hybrid-Electric Aircraft
Abstract
1. Introduction
1.1. A Review of the Methods for Condition Monitoring
1.2. The Purpose of the Article
2. The Proposed Method
2.1. The Condition Monitoring Process
2.2. The Capacitor Model During Discharge
2.3. Recursive Least Squares
3. Simulation Validation
3.1. The Digital Model
3.2. Validation Results
3.3. The Influence of the Time Constant
4. Experimental Tests
4.1. The Experimental Stand
4.2. The Test Results
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AC | Alternating current |
DC | Direct current |
GHGs | Greenhouse gases |
IGBT | Insulated-Gate Bipolar Transistor |
IQR | Interquartile range |
RLS | Recursive least squares |
RRLS | Repetitive recursive least squares |
References
- Sher, F.; Raore, D.; Klemeš, J.J.; Rafi-Ul-Shan, P.M.; Khzouz, M.; Marintseva, K.; Razmkhah, O. Unprecedented impacts of aviation emissions on global environmental and climate change scenario. Curr. Pollut. Rep. 2021, 7, 549–564. [Google Scholar] [CrossRef]
- Filippone, A.; Pakes, B. Evaluation of commuter airplane emissions: A European case study. Transp. Res. Part D Transp. Environ. 2021, 98, 102979. [Google Scholar] [CrossRef]
- Avogadro, N.; Redondi, R. Pathways toward sustainable aviation: Analyzing emissions from air operations in Europe to support policy initiatives. Transp. Res. Part A Policy Pract. 2024, 186, 104121. [Google Scholar] [CrossRef]
- HECATE. HECATE Project Website. Available online: https://hecate-project.eu/about/context-and-objectives/ (accessed on 19 April 2025).
- Ramees, M.K.P.M.; Ahmad, W. Advances in capacitor health monitoring techniques for power converters: A review. IEEE Access 2023, 11, 133540–133576. [Google Scholar] [CrossRef]
- Klima, J. Analytical investigation of influence of DC-link voltage ripple on PWM VSI fed induction motor drive. In Proceedings of the 2006 1st IEEE Conference on Industrial Electronics and Applications, Singapore, 24–26 May 2006. [Google Scholar] [CrossRef]
- Gardan, G.; Montanari, G.C. AC ripple on DC voltage: Experimental and theoretical investigation of the impact on accelerated ageing in electrical insulation. High Volt. 2024, 9, 902–910. [Google Scholar] [CrossRef]
- Wheeler, P.; Sirimanna, T.S.; Bozhko, S.; Haran, K.S. Electric/hybrid-electric aircraft propulsion systems. Proc. IEEE 2021, 109, 1115–1127. [Google Scholar] [CrossRef]
- Zhao, Z.; Davari, P.; Lu, W.G.; Wang, H.; Blaabjerg, F. An overview of condition monitoring techniques for capacitors in DC-link applications. IEEE Trans. Power Electron. 2020, 36, 3692–3716. [Google Scholar] [CrossRef]
- Luo, Q.; Luo, B.; Zhu, Y.; Wang, H.; Wang, Q.; Zhu, G. Condition monitoring of DC-link capacitors by estimating capacitance and real-time core temperature. In Proceedings of the 2022 IEEE 13th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Kiel, Germany, 26–29 June 2022. [Google Scholar] [CrossRef]
- Wang, W.; Wu, Q.; Shi, H.; Wang, Q.; Xiao, L.; Wu, Y.; Gu, S.; Liu, J. A non-invasive online condition monitoring method for both sic mosfet and dc-link capacitor in a single-phase inverter. In Proceedings of the 2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing), Nanjing, China, 24 November 2021. [Google Scholar] [CrossRef]
- Laadjal, K.; Sahraoui, M.; Cardoso, A.J.M. On-line fault diagnosis of DC-link electrolytic capacitors in boost converters using the STFT technique. IEEE Trans. Power Electron. 2020, 36, 6303–6312. [Google Scholar] [CrossRef]
- Yamasoto, T.; Hasegawa, K. Condition monitoring of a DC-link capacitor in an inverter with a front-end diode rectifier under imbalanced three-phase supply voltage. Microelectron. Reliab. 2025, 173, 115873. [Google Scholar] [CrossRef]
- Skowron, M.; Oliszewski, S.; Dybkowski, M.; Jarosz, J.J.; Pawlak, M.; Weisse, S.; Valire, J.; Wyłomańska, A.; Zimroz, R.; Szabat, K. Applications of the TL-Based Fault Diagnostic System for the Capacitor in Hybrid Aircraft. Electronics 2024, 13, 1638. [Google Scholar] [CrossRef]
- Fassi, Y.; Zhao, S.; Wei, X.; Heiries, V.; Boutet, J.; Boisseau, S.; Wang, H. Neural Network-Enabled Condition Monitoring of DC-Link Capacitors in Three-Phase Inverters. In Proceedings of the PCIM Conference 2025 International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nürnberg, Germany, 6–8 May 2025. [Google Scholar] [CrossRef]
- Al-Wesabi, I.; Al-Shamma’A, A.A.; Farh, H.M.H.; Al Dawood, R.; Mwakipunda, G.C.; Xu, J. Capacitance Estimation Algorithm Based on DC-Link Voltage Ripples Using Hybrid Machine Learning Techniques in Power Electronics Converters. Results Eng. 2025, 27, 106216. [Google Scholar] [CrossRef]
- Wang, H.; Qiu, R.; Chen, Y.; Ma, M.; Li, F.; Zhang, X. An Online DC-Link Capacitor Condition Monitoring Method for CHB-Type SVG. IEEE Trans. Power Electron. 2025, 40, 10385–10390. [Google Scholar] [CrossRef]
- Ghadrdan, M.; Abdi, B.; Peyghami, S.; Mokhtari, H.; Blaabjerg, F. On-line condition monitoring system for DC-link capacitor of back-to-back converters using large-signal transients. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 11, 1132–1142. [Google Scholar] [CrossRef]
- Shuai, Z.; Wang, Q.; Hong, Z.; Wang, W.; Peng, Y. An Online Multi-Capacitors Monitoring Scheme for the Modular Cascaded LLC Converter. IEEE J. Emerg. Sel. Top. Power Electron. 2025; accepted. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhao, J.; Song, Y.; Zhou, Y.; Sun, J. Online condition monitoring for DC-link capacitors of motor drives under noise interference. J. Power Electron. 2022, 22, 1142–1153. [Google Scholar] [CrossRef]
- Wu, Y.; Du, X. A VEN condition monitoring method of DC-link capacitors for power converters. IEEE Trans. Ind. Electron. 2018, 66, 1296–1306. [Google Scholar] [CrossRef]
- Baumann, T.F.; Murillo-Garcia, R.; Papastergiou, K.; Peftitsis, D. Discharge-based condition monitoring for electrolytic DC-link capacitors. IEEE Trans. Power Electron. 2024, 39, 16622–16637. [Google Scholar] [CrossRef]
- Oliszewski, S.; Pawlak, M.; Dybkowski, M. DC-Link Capacitors Online Condition Monitoring Using Repetitive RLS in Hybrid-electric Aircraft. IEEE Access 2025, 13, 131166–131176. [Google Scholar] [CrossRef]
- Malarczyk, M.; Katsura, S.; Kaminski, M.; Szabat, K. A Novel Meta-Heuristic Algorithm Based on Birch Succession in the Optimization of an Electric Drive with a Flexible Shaft. Energies 2024, 17, 4104. [Google Scholar] [CrossRef]
- Wang, X. An intensified northern goshawk optimization algorithm for solving optimization problems. Eng. Res. Express 2024, 6, 045267. [Google Scholar] [CrossRef]
- Qiu, Y.; Yang, X.; Chen, S. An improved gray wolf optimization algorithm solving to functional optimization and engineering design problems. Sci. Rep. 2024, 14, 14190. [Google Scholar] [CrossRef]
Parameter | Value | Unit |
---|---|---|
Power source voltage | 560 | V |
Discharge resistor resistance | 1000 | Ω |
Load resistance | 100 | Ω |
Load inductance | 5 | mH |
Capacitance [μF] | Estimation Error [%] |
---|---|
705 | 0.18 |
881 | 0.80 |
940 | 0.03 |
1044 | 0.24 |
1175 | 0.11 |
Mean | 0.27 |
Capacitance [μF] | Estimation Error of 1st Iteration [%] | Estimation Error of 50th Iteration [%] |
---|---|---|
705 | 11.11 | 0.18 |
881 | 7.36 | 0.80 |
940 | 5.43 | 0.03 |
1044 | 3.35 | 0.24 |
1175 | 0.41 | 0.11 |
Resistance Multiplier | Estimation Error [%] |
---|---|
0.1 | 4.55 |
0.2 | 0.21 |
1 | 0.04 |
5 | 0.18 |
10 | 0.65 |
Parameter | Value |
---|---|
Singular electrical motor power [W] | 1500 |
DC-link capacitance per capacitor [μF] | 470 |
Discharge circuit resistance per resistor [Ω] | 470 |
Current transducer measuring range [mA] | ±500 |
Voltage probe DC measuring range [V] | ±800 |
Sampling frequency [Hz] | 10,000 |
Transistor switching frequency [Hz] | 10,000 |
Capacitance [μF] | Estimation Error [%] |
---|---|
705 | 7.64 |
881 | 2.19 |
940 | 1.79 |
1044 | 3.93 |
1175 | 6.85 |
Mean | 4.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliszewski, S.; Pawlak, M.; Dybkowski, M. Discharge-Based DC-Bus Voltage Link Capacitor Monitoring with Repetitive Recursive Least Squares Method for Hybrid-Electric Aircraft. Energies 2025, 18, 4743. https://doi.org/10.3390/en18174743
Oliszewski S, Pawlak M, Dybkowski M. Discharge-Based DC-Bus Voltage Link Capacitor Monitoring with Repetitive Recursive Least Squares Method for Hybrid-Electric Aircraft. Energies. 2025; 18(17):4743. https://doi.org/10.3390/en18174743
Chicago/Turabian StyleOliszewski, Stanisław, Marcin Pawlak, and Mateusz Dybkowski. 2025. "Discharge-Based DC-Bus Voltage Link Capacitor Monitoring with Repetitive Recursive Least Squares Method for Hybrid-Electric Aircraft" Energies 18, no. 17: 4743. https://doi.org/10.3390/en18174743
APA StyleOliszewski, S., Pawlak, M., & Dybkowski, M. (2025). Discharge-Based DC-Bus Voltage Link Capacitor Monitoring with Repetitive Recursive Least Squares Method for Hybrid-Electric Aircraft. Energies, 18(17), 4743. https://doi.org/10.3390/en18174743