The Economics of Innovation, Renewable Energy, and Energy Efficiency for Sustainability: A Circular Economy Approach to Decoupling Growth from Environmental Degradation
Abstract
1. Introduction
2. Literature Review and Hypothesis Development
2.1. CE Perspective and Technology-Driven Innovation
2.2. Technological Innovation and Sustainable Environment
3. Materials and Methods
3.1. Data and Variable Description
3.2. Sample
3.3. Model Specification and Estimation Procedure
3.3.1. Static Panel Estimators: FE and RE
3.3.2. Dynamic Panel Estimators: GMM
3.3.3. Moderation Analysis
3.3.4. Diagnostic and Robustness Checks
3.3.5. Methodological Framework
4. Results and Discussion
4.1. The Baseline Regression Findings
4.2. Moderation Effect Regression Findings
5. Conclusions
6. Policy Implications
7. Directions for Future Studies
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McCarthy, J.; Minsky, M.L.; Rochester, N.; Shannon, C.E. A proposal for the dartmouth summer research project on artificial intelligence, august 31, 1955. AI Mag. 2006, 27, 12. [Google Scholar]
- Awan, U.; Kanwal, N.; Alawi, S.; Huiskonen, J.; Dahanayake, A. Artificial intelligence for supply chain success in the era of data analytics. In The Fourth Industrial Revolution: Implementation of Artificial Intelligence for Growing Business Success; Springer: Cham, Switzerland, 2021; pp. 3–21. [Google Scholar]
- Hernández-Romero, I.M.; Niño-Caballero, J.C.; González, L.T.; Pérez-Rodríguez, M.; Flores-Tlacuahuac, A.; Montesinos-Castellanos, A. Waste management optimization with NLP modeling and waste-to-energy in a circular economy. Sci. Rep. 2024, 14, 19859. [Google Scholar] [CrossRef]
- Melinda, V.; Williams, T.; Anderson, J.; Davies, J.G.; Davis, C. Enhancing waste-to-energy conversion efficiency and sustainability through advanced artificial intelligence integration. Int. Trans. Educ. Technol. (ITEE) 2024, 2, 183–192. [Google Scholar] [CrossRef]
- Nañez Alonso, S.L.; Reier Forradellas, R.F.; Pi Morell, O.; Jorge-Vazquez, J. Digitalization, circular economy and environmental sustainability: The application of Artificial Intelligence in the efficient self-management of waste. Sustainability 2021, 13, 2092. [Google Scholar] [CrossRef]
- Wilts, H.; Garcia, B.R.; Garlito, R.G.; Gómez, L.S.; Prieto, E.G. Artificial intelligence in the sorting of municipal waste as an enabler of the circular economy. Resources 2021, 10, 28. [Google Scholar] [CrossRef]
- Schlüter, M.; Lickert, H.; Schweitzer, K.; Bilge, P.; Briese, C.; Dietrich, F.; Krüger, J. AI-enhanced identification, inspection and sorting for reverse logistics in remanufacturing. Procedia CIRP 2021, 98, 300–305. [Google Scholar] [CrossRef]
- Lechner, G.; Reimann, M. Integrated decision-making in reverse logistics: An optimisation of interacting acquisition, grading and disposition processes. Int. J. Prod. Res. 2020, 58, 5786–5805. [Google Scholar] [CrossRef]
- Khayyam, H.; Naebe, M.; Milani, A.S.; Fakhrhoseini, S.M.; Date, A.; Shabani, B.; Atkiss, S.; Ramakrishna, S.; Fox, B.; Jazar, R.N. Improving energy efficiency of carbon fiber manufacturing through waste heat recovery: A circular economy approach with machine learning. Energy 2021, 225, 120113. [Google Scholar] [CrossRef]
- Trusilo, D.; Danks, D. Commercial AI, Conflict, and Moral Responsibility: A theoretical analysis and practical approach to the moral responsibilities associated with dual-use AI technology. arXiv 2024, arXiv:2402.01762. [Google Scholar] [CrossRef]
- Ligozat, A.-L.; Lefevre, J.; Bugeau, A.; Combaz, J. Unraveling the hidden environmental impacts of AI solutions for environment life cycle assessment of AI solutions. Sustainability 2022, 14, 5172. [Google Scholar] [CrossRef]
- Van Wynsberghe, A. Sustainable AI: AI for sustainability and the sustainability of AI. AI Ethics 2021, 1, 213–218. [Google Scholar] [CrossRef]
- Bag, S.; Yadav, G.; Dhamija, P.; Kataria, K.K. Key resources for industry 4.0 adoption and its effect on sustainable production and circular economy: An empirical study. J. Clean. Prod. 2021, 281, 125233. [Google Scholar] [CrossRef]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Yang, Y.; Guan, J.; Nwaogu, J.M.; Chan, A.P.; Chi, H.-l.; Luk, C.W. Attaining higher levels of circularity in construction: Scientometric review and cross-industry exploration. J. Clean. Prod. 2022, 375, 133934. [Google Scholar] [CrossRef]
- Lin, K.-Y. User experience-based product design for smart production to empower industry 4.0 in the glass recycling circular economy. Comput. Ind. Eng. 2018, 125, 729–738. [Google Scholar] [CrossRef]
- de Mattos Nascimento, D.L.; Garcia-Buendia, N.; Moyano-Fuentes, J.; Maqueira, J.M. Unlocking the potential of industry 4.0 for supply chain flexibility and agility: A systematic literature review. Eng. Manag. J. 2024, 37, 433–451. [Google Scholar] [CrossRef]
- Caiado, R.G.G.; Scavarda, L.F.; Vidal, G.; de Mattos Nascimento, D.L.; Garza-Reyes, J.A. A taxonomy of critical factors towards sustainable operations and supply chain management 4.0 in developing countries. Oper. Manag. Res. 2023, 18, 744–767. [Google Scholar] [CrossRef]
- Roberts, H.; Zhang, J.; Bariach, B.; Cowls, J.; Gilburt, B.; Juneja, P.; Tsamados, A.; Ziosi, M.; Taddeo, M.; Floridi, L. Artificial intelligence in support of the circular economy: Ethical considerations and a path forward. AI Soc. 2024, 39, 1451–1464. [Google Scholar] [CrossRef]
- Burmaoglu, S.; Ozdemir Gungor, D.; Kirbac, A.; Saritas, O. Future research avenues at the nexus of circular economy and digitalization. Int. J. Product. Perform. Manag. 2023, 72, 2247–2269. [Google Scholar] [CrossRef]
- Alamelu, R.; Sudha, M.; Purushothaman, R. Adoption of Circular Economy Strategies With Artificial Intelligence: Technology to Hasten the Shift. In Impacts of Technology on Operations Management: Adoption, Adaptation, and Optimization; IGI Global: Hershey, PA, USA, 2025; pp. 179–204. [Google Scholar]
- Geissdoerfer, M.; Pieroni, M.P.; Pigosso, D.C.; Soufani, K. Circular business models: A review. J. Clean. Prod. 2020, 277, 123741. [Google Scholar] [CrossRef]
- Scarpellini, S.; Marín-Vinuesa, L.M.; Aranda-Usón, A.; Portillo-Tarragona, P. Dynamic capabilities and environmental accounting for the circular economy in businesses. Sustain. Account. Manag. Policy J. 2020, 11, 1129–1158. [Google Scholar] [CrossRef]
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank Publications: Washington, DC, USA, 2018. [Google Scholar]
- Oldfield, T.L.; White, E.; Holden, N.M. The implications of stakeholder perspective for LCA of wasted food and green waste. J. Clean. Prod. 2018, 170, 1554–1564. [Google Scholar] [CrossRef]
- Persis, D.J.; Venkatesh, V.; Sreedharan, V.R.; Shi, Y.; Sankaranarayanan, B. Modelling and analysing the impact of Circular Economy; Internet of Things and ethical business practices in the VUCA world: Evidence from the food processing industry. J. Clean. Prod. 2021, 301, 126871. [Google Scholar] [CrossRef]
- Çetin, S.; De Wolf, C.; Bocken, N. Circular digital built environment: An emerging framework. Sustainability 2021, 13, 6348. [Google Scholar] [CrossRef]
- Ramchandani, M.; Rughwani, H.; Inavolu, P.; Singh, A.P.; Tevethia, H.V.; Jagtap, N.; Sekaran, A.; Kanakagiri, H.; Darishetty, S.; Reddy, D.N. Diagnostic yield and therapeutic impact of novel motorized spiral enteroscopy in small-bowel disorders: A single-center, real-world experience from a tertiary care hospital (with video). Gastrointest. Endosc. 2021, 93, 616–626. [Google Scholar] [CrossRef]
- Rakhshan, K.; Morel, J.-C.; Daneshkhah, A. A probabilistic predictive model for assessing the economic reusability of load-bearing building components: Developing a Circular Economy framework. Sustain. Prod. Consum. 2021, 27, 630–642. [Google Scholar] [CrossRef]
- Özsoy, T. The role of artificial intelligence in facilitating the transition to a circular economy. Nişantaşı Üniversitesi Sos. Bilim. Derg. 2023, 11, 369–389. [Google Scholar] [CrossRef]
- Dhanya, D.; Kumar, S.S.; Thilagavathy, A.; Prasad, D.; Boopathi, S. Data Analytics and Artificial Intelligence in the Circular Economy: Case Studies. In Intelligent Engineering Applications and Applied Sciences for Sustainability; IGI Global: Hershey, PA, USA, 2023; pp. 40–58. [Google Scholar]
- Gue, I.H.V.; Tan, R.R.; Ubando, A.T. Causal network maps of urban circular economies. Clean Technol. Environ. Policy 2022, 24, 261–272. [Google Scholar] [CrossRef]
- Farghali, M.; Osman, A.I. Revolutionizing waste management: Unleashing the power of artificial intelligence and machine learning. In Advances in Energy from Waste; Elsevier: Amsterdam, The Netherlands, 2024; pp. 225–279. [Google Scholar]
- Singh, J.P. Artificial Intelligence in Circular Economies: A Pathway to Sustainable Resource Management. Int. J. Sci. Res. (IJSR) 2023, 12, 1128–1130. [Google Scholar] [CrossRef]
- Nwokediegwu, Z.Q.S.; Ugwuanyi, E.D.; Dada, M.A.; Majemite, M.T.; Obaigbena, A. AI-driven waste management systems: A comparative review of innovations in the USA and Africa. Eng. Sci. Technol. J. 2024, 5, 507–516. [Google Scholar] [CrossRef]
- Poonkuzhali, R.; Karamath, M.; Sugumaran, P.; Tharun, M.; Arun, S. Recycling as a Service: IoT Enabled Smart Waste Management System with Machine Learning. In Proceedings of the 2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS), Chikkaballapur, India, 18–19 April 2024; pp. 1–6. [Google Scholar]
- Bodislav, D.A.; Moraru, L.C.; Georgescu, R.I.; Grigore, G.E.; Vlăduț, O.; Staicu, G.I.; Chenic, A.Ș. Recyclable Consumption and Its Implications for Sustainable Development in the EU. Sustainability 2025, 17, 3110. [Google Scholar] [CrossRef]
- Scheel, C.; Aguiñaga, E. A Systems View of Circular Economy. Sustainability 2025, 17, 1268. [Google Scholar] [CrossRef]
- Erdoğdu, A.; Dayi, F.; Yanik, A.; Yildiz, F.; Ganji, F. Innovative solutions for combating climate change: Advancing sustainable energy and consumption practices for a greener future. Sustainability 2025, 17, 2697. [Google Scholar] [CrossRef]
- Činčikaitė, R. Assessment of sustainable waste management: A case study in Lithuania. Sustainability 2025, 17, 120. [Google Scholar] [CrossRef]
- Lin, J.; Zeng, Y.; Wu, S.; Luo, X.R. How does artificial intelligence affect the environmental performance of organizations? The role of green innovation and green culture. Inf. Manag. 2024, 61, 103924. [Google Scholar] [CrossRef]
- Raman, R.; Lathabai, H.H.; Mandal, S.; Das, P.; Kaur, T.; Nedungadi, P. ChatGPT: Literate or intelligent about UN sustainable development goals? PLoS ONE 2024, 19, e0297521. [Google Scholar] [CrossRef]
- Wu, C.-J.; Raghavendra, R.; Gupta, U.; Acun, B.; Ardalani, N.; Maeng, K.; Chang, G.; Aga, F.; Huang, J.; Bai, C. Sustainable ai: Environmental implications, challenges and opportunities. Proc. Mach. Learn. Syst. 2022, 4, 795–813. [Google Scholar]
- Strubell, E.; Ganesh, A.; McCallum, A. Energy and policy considerations for modern deep learning research. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 13693–13696. [Google Scholar]
- Mehonic, A.; Kenyon, A.J. Brain-inspired computing needs a master plan. Nature 2022, 604, 255–260. [Google Scholar] [CrossRef]
- Malmodin, J.; Lövehagen, N.; Bergmark, P.; Lundén, D. ICT sector electricity consumption and greenhouse gas emissions–2020 outcome. Telecommun. Policy 2024, 48, 102701. [Google Scholar] [CrossRef]
- Konya, A.; Nematzadeh, P. Recent applications of AI to environmental disciplines: A review. Sci. Total Environ. 2024, 906, 167705. [Google Scholar] [CrossRef]
- Patterson, D.; Gonzalez, J.; Le, Q.; Liang, C.; Munguia, L.-M.; Rothchild, D.; So, D.; Texier, M.; Dean, J. Carbon emissions and large neural network training. arXiv 2021, arXiv:2104.10350. [Google Scholar] [CrossRef]
- Coulson-Thomas, C. Building purpose-driven business organisations and their boards. Eff. Exec. 2024, 27, 13–38. [Google Scholar]
- Meng, Y.; Noman, H. Predicting CO2 Emission Footprint Using AI through Machine Learning. Atmosphere 2022, 13, 1871. [Google Scholar] [CrossRef]
- Li, J.; He, J.; Xu, Z. Sustainability and Material Flow Analysis of Wind Turbine Blade Recycling in China. Sustainability 2025, 17, 4307. [Google Scholar] [CrossRef]
- Javed, M.H.; Ahmad, A.; Rehan, M.; Farooq, M.; Farhan, M.; Raza, M.A.; Nizami, A.-S. Advancing Circular Economy Through Optimized Construction and Demolition Waste Management Under Life Cycle Approach. Sustainability 2025, 17, 4882. [Google Scholar] [CrossRef]
- Bajrami, R.; Tafa, S.; Gashi, A.; Hashani, M. Analysing the impact of money supply on economic growth: A panel regression approach for Western Balkan countries (2000–2023). Reg. Sci. Policy Pract. 2025, 17, 100159. [Google Scholar] [CrossRef]
- Arellano, M.; Bond, S. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef]
- Blundell, R.; Bond, S. Initial conditions and moment restrictions in dynamic panel data models. J. Econom. 1998, 87, 115–143. [Google Scholar] [CrossRef]
- Roodman, D. A note on the theme of too many instruments. Oxf. Bull. Econ. Stat. 2009, 71, 135–158. [Google Scholar] [CrossRef]
- Arellano, M.; Bover, O. Another look at the instrumental variable estimation of error-components models. J. Econom. 1995, 68, 29–51. [Google Scholar] [CrossRef]
- Hansen, L.P. Large sample properties of generalized method of moments estimators. Econom. J. Econom. Soc. 1982, 50, 1029–1054. [Google Scholar] [CrossRef]
- Sargan, J.D. The estimation of economic relationships using instrumental variables. Econom. J. Econom. Soc. 1958, 26, 393–415. [Google Scholar] [CrossRef]
- Banik, B.; Akter, T.; Roy, C.K.; Hossain, R. Trade openness and manufacturing growth of asian economies: Investigating linear and non-linear effect. J. Econ. Sustain. 2025, 7, 76–94. [Google Scholar] [CrossRef]
- Elhaj, M. Do Energy Efficiency and Technology Boost Sustainable Environment: Evidence from GCC Countries. J. Ecohumanism 2024, 3, 2545–2565. [Google Scholar] [CrossRef]
- Sarabdeen, M.; Elhaj, M.; Alofaysan, H. Do Digital Adaptation, Energy Transition, Export Diversification, and Income Inequality Accelerate towards Load Capacity Factors across the Globe? Energies 2024, 17, 3981. [Google Scholar] [CrossRef]
- Sarabdeen, M.; Elhaj, M.; Alofaysan, H. Exploring the influence of digital transformation on clean energy transition, climate change, and economic growth among selected oil-export countries through the panel ARDL approach. Energies 2024, 17, 298. [Google Scholar] [CrossRef]
- Baltagi, B.H. Econometric Analysis of Panel Data; John Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Nickell, S. Biases in dynamic models with fixed effects. Econom. J. Econom. Soc. 1981, 49, 1417–1426. [Google Scholar] [CrossRef]
Variable | Abbreviation | Definition | References |
---|---|---|---|
Carbon dioxide emissions | CO2 | CO2 emissions (kg per 2015 USD of GDP). | WB-WDI |
Bio-capacity | BC | Ecosystems’ capacity to produce biological materials used by people and to absorb waste material generated by humans, under current management schemes and extraction technologies. | UNEP Global Material Flows Database |
AI Adaptation | FTRI | Frontier Technology Readiness Index. | UNCTAD |
Material Footprint | MFP | Entire number of raw materials extracted to meet ultimate consumption requirements. | UNEP Global Material Flows Database |
Energy Efficiency | EE | Energy intensity level of primary energy (MJ/USD 2017 PPP GDP). | WB-WDI |
Renewable Energy | REN | Renewable energy consumption (% of total final energy consumption). | WB-WDI |
Economic Growth | GDP | GDP per capita (constant 2015 USD). | WB-WDI |
Industry | HTM | Medium- and high-tech manufacturing value added (% manufacturing value added). | WB-WDI |
Employment | EMP | Employment to population ratio 15+ (ILO estimate). | WB-WDI |
Innovation Adaptation × Energy Efficiency | FTRI × EE | Moderation effects of Innovation Adaptation × Energy Efficiency. | Created by authors |
Innovation Adaptation × Renewable energy | FTRI × RE | Moderation effects of Innovation Adaptation × Renewable energy. | Created by authors |
Innovation Adaptation × Economic growth | FTRI × GDP | Moderation effects of Innovation Adaptation × Economic growth. | Created by authors |
Innovation Adaptation × Material Footprint | FTRI × EE | Moderation effects of Innovation Adaptation × Material Footprint. | Created by authors |
Renewable energy × Energy Efficiency | REI × EE | Moderation effects of Renewable energy × Energy Efficiency. | Created by authors |
Algeria | China | Guatemala | Latvia | Norway | Thailand |
Argentina | Colombia | Honduras | Lithuania | Pakistan | Turkey |
Armenia | Costa Rica | Hungary | Luxembourg | Panama | Uganda |
Austria | Croatia | India | Madagascar | Philippines | Ukraine |
Azerbaijan | Cyprus | Indonesia | Malaysia | Poland | United Arab Emirates |
Bahrain | Denmark | Iran | Malta | Portugal | United Kingdom |
Bangladesh | Ecuador | Israel | Mexico | Qatar | United States of America |
Belarus | Egypt | Italy | Moldova | Russian Federation | Viet Nam |
Belgium | Estonia | Jamaica | Mongolia | Saudi Arabia | Zambia |
Bosnia and Herzegovina | Finland | Japan | Morocco | Serbia | |
Botswana | France | Jordan | Mozambique | Singapore | |
Brazil | Georgia | Kazakhstan | Netherlands | Slovakia | |
Bulgaria | Germany | Kenya | New Zealand | Sri Lanka | |
Chile | Greece | Kyrgyzstan | Nigeria | Switzerland |
Variable | Obser | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
lnCO2 | 948 | 1.2609 | 1.1291 | −2.4529 | 3.6784 |
lnBC | 948 | 17.0547 | 1.7613 | 12.4262 | 21.3028 |
lnFTRI | 948 | −0.6604 | 0.5113 | −2.3026 | 0 |
lnMFP | 948 | 17.2993 | 1.6640 | 13.7528 | 22.2778 |
lnEE | 948 | 1.4039 | 0.4415 | 0.1906 | 2.6490 |
lnREN | 936 | 2.5255 | 1.6093 | −4.6052 | 4.5345 |
lnMHT | 948 | 3.1515 | 0.7521 | 0.2397 | 4.4276 |
lnGDP | 948 | 9.1283 | 1.2667 | 6.0727 | 11.6121 |
lnEMP | 948 | 4.0263 | 0.1851 | 3.4339 | 4.4718 |
Variable | lnCO2 | lnBC | lnMFP | lnFTRI | lnEE | lnREN | lnMHT | lnGDP | lnEMPn |
---|---|---|---|---|---|---|---|---|---|
lnCO2 | 1.0000 | ||||||||
lnBC | −0.1060 | 1.0000 | |||||||
lnFTRI | 0.7695 | 0.0283 | 1.0000 | ||||||
lnMFP | 0.3633 | 0.6969 | 0.4914 | 1.0000 | |||||
lnEE | −0.0808 | 0.2231 | −0.3943 | −0.0773 | 1.0000 | ||||
lnREN | −0.5966 | 0.1797 | −0.2163 | −0.2037 | −0.1330 | 1.0000 | |||
lnMHT | 0.4937 | 0.1965 | 0.6348 | 0.5914 | −0.1625 | −0.1191 | 1.0000 | ||
lnGDP | 0.8046 | −0.1721 | 0.8261 | 0.3145 | −0.4147 | −0.3238 | 0.5829 | 1.0000 | |
lnEMP | −0.0772 | 0.0031 | −0.1169 | −0.1056 | 0.1837 | 0.0511 | 0.0230 | 0.0384 | 1.0000 |
Variables | FE Coefficient p Value | RE Coefficient p Value | S.GMM Coefficient p Value | D.GMM Coefficient p Value |
---|---|---|---|---|
L.lnCO2 | 0.8153 *** (0.000) | 0.5567 *** (0.000) | ||
lnBC | −0.0743 (0.187) | −0.0282 (0.280) | −0.0730 ** (0.045) | 0.0164 (0.767) |
lnFTRI | 0.0850 *** (0.000) | 0.1022 *** (0.000) | 0.2611 * (0.054) | 0.0116 (0.699) |
lnMFP | 0.0513 *** (0.001) | 0.0632 *** (0.000) | 0.1452 ** (0.018) | −0.0071 (0.693) |
lnEE | 1.0081 *** (0.000) | 0.9025 *** (0.000) | 0.1744 (0.159) | 0.6989 *** (0.000) |
lnREN | −0.1392 *** (0.000) | −0.1410 *** (0.000) | −0.0069 (0.812) | −0.0570 ** (0.035) |
lnMHT | −0.0295 *** (0.043) | −0.0210 *** (0.041) | −0.3897 ** (0.041) | −0.2961 ** (0.007) |
lnGDP | 0.9653 *** (0.000) | 0.8211 *** (0.000) | 0.1197 (0.199) | 0.9711 *** (0.000) |
lnEMP | −0.1058 (0.185) | −0.1203 (0.117) | 0.7616 ** (0.025) | −0.3603 (0.638) |
Cons. | −7.6596 *** (0.000) | −7.0946 *** (0.000) | −4.0261 ** (0.005) | |
Number of obs | 936 | 936 | 858 | 780 |
R2 | 0.79 | 0.80 | ||
Hausman’s test | chi2(8) = 117.39 *** p-value = 0.000 | |||
AR (1) | 0.000 | 0.005 | ||
AR (2) | 0.424 | 0.430 | ||
Sargan’s T. p value | 0605 | 0.327 | ||
Hansen’s T. p value | 0.472 | 0.297 | ||
Instruments/group | 13/78 | 16/78 |
Variable | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 |
---|---|---|---|---|---|
Cons. | −7.5421 *** (0.000) | −8.1727 *** (0.000) | −8.0290 *** (0.000) | −7.7074 *** (0.000) | −7.4245 *** (0.000) |
lnBC | −0.04962 (0.377) | −0.0500 (0.379) | −0.0886 (0.104) | −0.0488 (0.379) | −0.0678 (0.216) |
lnFTRI | 0.8593 *** (0.000) | 0.0018 (0.961) | −0.4332 *** (0.000) | 0.8006 *** (0.000) | 0.0868 *** (0.000) |
lnMFP | 0.0076 (0.688) | 0.0502 *** (0.001) | 0.0416 *** (0.007) | 0.0469 *** (0.002) | 0.0559 *** (0.002) |
lnEE | 1.0208 *** (0.000) | 1.0289 *** (0.000) | 1.1681 *** (0.000) | 1.0198 *** (0.000) | 0.6886 *** (0.000) |
lnREN | −0.1352 *** (0.000) | −0.1174 *** (0.000) | −0.1319 *** (0.000) | −0.1251 *** (0.000) | −0.3248 *** (0.000) |
lnMHT | −0.0270 * (0.063) | −0.0276 * (0.058) | −0.0216 (0.126) | −0.0227 (0.115) | −0.0134 (0.353) |
lnGDP | 0.9966 *** (0.000) | 0.9643 *** (0.000) | 1.0328 *** (0.000) | 0.9117 *** (0.000) | 0.9600 *** (0.000) |
lnEMP | −0.1360 * (0.087) | −0.0988 (0.214) | −0.1432 * (0.064) | −0.0887 (0.257) | −0.0864 (0.266) |
lnFTRI × lnMFP | −0.0481 *** (0.000) | ||||
lnFTRI × lnREN | 0.0262 *** (0.008) | ||||
lnFTRI × lnEE | 0.2894 *** (0.000) | ||||
lnFTRI × lnGDP | −0.0921 *** (0.000) | ||||
lnEE × lnREN | 0.1189 *** (0.000) | ||||
Number of obs | 936 | 936 | 936 | 936 | 936 |
Number of years | 12 | 12 | 12 | 12 | 12 |
R2 | 0.78 | 0.80 | 0.81 | 0.81 | 0.77 |
Variable | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 |
---|---|---|---|---|---|
L.lnCO2 | 0.8353 *** (0.000) | 0.7325 *** (0.000) | 0.7158 *** (0.000) | 0.6422 *** (0.000) | 0.8707 *** (0.000) |
lnBC | −0.0682 ** (0.050) | −0.0865 ** (0.042) | −0.0864 ** (0.034) | −0.0816 ** (0.034) | −0.0835 ** (0.012) |
lnFTRI | 2.3827 ** (0.684) | 0.0201 (0.919) | −0.2587 (0.181) | 2.0922 ** (0.005) | 0.1875 ** (0.047) |
lnMFP | 0.0674 * (0.079) | 0.1535 ** (0.022) | 0.1450 ** (0.021) | 0.1331 ** (0.021) | 0.1406 ** (0.006) |
lnEE | 0.1973 (0.149) | 0.2304 (0.119) | 0.5083 * (0.058) | 0.3368 ** (0.043) | 0.4440 ** (0.020) |
lnREN | 0.0083 (0.790) | 0.0595 (0.162) | −0.0099 (0.787) | −0.0014 (0.964) | 0.1743 ** (0.012) |
lnMHT | −0.3488 ** (0.033) | −0.3620 ** (0.047) | −0.3727 ** (0.048) | −0.2583 ** (0.040) | −0.3401 ** (0.021) |
lnGDP | 0.1075 (0.211) | 0.1430 (0.132) | 0.1865 (0.137) | 0.1031 (0.178) | 0.0892 (0.230) |
lnEMP | 1.1682 ** (0.009) | 0.8457 ** (0.040) | 1.0258 ** (0.040) | 0.8794 ** (0.038) | 0.5530 ** (0.046) |
lnFTRI × lnMFP | −0.1293 ** (0.007) | ||||
lnFTRI × lnREN | 0.0948 * (0.068) | ||||
lnFTRI × lnEE | 0.3443 ** (0.045) | ||||
lnFTRI × lnGDP | −0.2237 ** (0.005) | ||||
lnEE × lnREN | −0.0961 ** (0.013) | ||||
Cons. | −4.5317 ** (0.007) | −4.7108 ** (0.009) | −5.8462 ** (0.016) | −4.4484 ** (0.010) | −3.4286 *** (0.002) |
AR (1) | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 |
AR (2) | 0.467 | 0.372 | 0.284 | 0.192 | 0.422 |
Sargan T. p value | 0.578 | 0.310 | 0.702 | 0.425 | 0.483 |
Hansen T. p value | 0.426 | 0.256 | 0.531 | 0.432 | 0.269 |
Code | Hypothesis | Relationships/Findings |
---|---|---|
H1 | Economic growth, resource use, and energy efficiency significantly improve the environment through circular economy adoption. | Do not improve environment |
H2 | Innovation (High-Tech Manufacturing, and Renewable energy consumption) improve the environment through circular economy adoption. | Improve environment |
H3 | Integrating innovation with economic growth, resource use, and energy efficiency significantly improve the environment. | Do not improve environment |
H4 | Integrating innovation with cleaner energy and energy efficiency will lead to positive effects on improved environmental quality. | Improve environment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elhaj, M.; Sarabdeen, M.; Almugren, H.Z.; Kijas, A.C.M.; Halid, N. The Economics of Innovation, Renewable Energy, and Energy Efficiency for Sustainability: A Circular Economy Approach to Decoupling Growth from Environmental Degradation. Energies 2025, 18, 4643. https://doi.org/10.3390/en18174643
Elhaj M, Sarabdeen M, Almugren HZ, Kijas ACM, Halid N. The Economics of Innovation, Renewable Energy, and Energy Efficiency for Sustainability: A Circular Economy Approach to Decoupling Growth from Environmental Degradation. Energies. 2025; 18(17):4643. https://doi.org/10.3390/en18174643
Chicago/Turabian StyleElhaj, Manal, Masahina Sarabdeen, Hawazen Zam Almugren, A. C. Muhammadu Kijas, and Noreha Halid. 2025. "The Economics of Innovation, Renewable Energy, and Energy Efficiency for Sustainability: A Circular Economy Approach to Decoupling Growth from Environmental Degradation" Energies 18, no. 17: 4643. https://doi.org/10.3390/en18174643
APA StyleElhaj, M., Sarabdeen, M., Almugren, H. Z., Kijas, A. C. M., & Halid, N. (2025). The Economics of Innovation, Renewable Energy, and Energy Efficiency for Sustainability: A Circular Economy Approach to Decoupling Growth from Environmental Degradation. Energies, 18(17), 4643. https://doi.org/10.3390/en18174643