Improving CO2 Capture Efficiency Through Novel CLOU-Based Fuel Reactor Configuration in Chemical Looping Combustion
Abstract
1. Introduction
2. Materials and Technological Background for CLC
2.1. Oxygen Carrier Materials
2.1.1. Nickel-Based Oxygen Carriers
2.1.2. Copper-Based Oxygen Carriers
2.1.3. Iron-Based Oxygen Carriers
2.1.4. Oxygen Carriers Based on Manganese and Cobalt
2.2. CLC Pilot Facilities
3. Results and Discussion
3.1. Description of the Novel Fuel Reactor Concept
3.2. Functional Advantages and Expected Performance
3.3. System Integration and CO2 Capture Process
3.4. Novelty and Technological Advantages of the Proposed Reactor
3.4.1. Key Innovative Aspects
- (1)
- Physical separation of solid phases—The perforated conveyor ensures complete isolation of CLOU-type oxygen carriers from fuel and ash particles, preventing fouling and chemical deactivation of the active material. This preserves reactivity and mechanical integrity over extended operating periods.
- (2)
- Independent control of oxygen carrier residence time—By adjusting the conveyor speed independently from the fuel bed dynamics, the redox cycle duration can be precisely optimized, ensuring high oxygen release efficiency and better utilization of the active phase.
- (3)
- Minimization of oxygen carrier losses—Eliminating direct contact with bottom ash significantly reduces the risk of active material loss through ash removal streams, improving process economy and sustainability.
- (4)
- Enhanced CO2 stream purity—Physical separation limits the transfer of unburned carbon and sulfur compounds to the air reactor, preventing their secondary oxidation and increasing the purity of the captured CO2 stream.
- (5)
- Reduced mechanical complexity compared to rotary systems—Unlike rotary reactors, the static perforated conveyor eliminates the need for high-precision dynamic seals, lowering leakage risks, mechanical wear, and maintenance demands, and thereby improving long-term reliability.
3.4.2. Comparative Analysis with State-of-the-Art Designs
- −
- Fouling and deactivation of the oxygen carrier surface due to ash deposition,
- −
- Attrition and mechanical degradation from abrasive interaction with ash particles,
- −
- Material losses when oxygen carriers are entrained with bottom ash or carried over to the air reactor,
- −
- Reduction in CO2 capture efficiency caused by oxidation of unburned carbon in the air reactor (carbon slip).
- −
- Increased mechanical complexity,
- −
- Gas leakage through imperfect seals between rotating and stationary components,
- −
- Higher maintenance requirements due to moving parts and wear-prone sealing surfaces.
- −
- Solids phase separation (physical or functional),
- −
- Ability to control oxygen carrier residence time,
- −
- Risk of material losses via bottom ash or entrainment,
- −
- Expected CO2 capture efficiency,
- −
- Mechanical complexity,
- −
- Risk of inter-zone gas leakage,
- −
- Maintenance demands over long-term operation.
3.4.3. Integration of the Novel Design into Numerical Modeling
3.4.4. Numerical Simulation Results
3.5. Discussion in the Context of Existing Technologies
4. Conclusions
5. Patents
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mei, J.; Quan, S.; Yang, H.; Zhang, M.; Zhou, T.; Yang, X.; Zhang, M.; Mun, T.; Li, Z.; Kim, R.-G.; et al. Research Progress and Perspectives of the Reaction Kinetics of Fe-Based Oxygen Carriers in Chemical Looping Combustion. Energies 2025, 18, 2313. [Google Scholar] [CrossRef]
- Toledo, R.C.; de Moraes, C.L.; Thangarasu, V.; de Carvalho, J.A.; Avila, I. Efficiency and Energy Consumption of Partial Carbonation Process for CO2 Capture from Natural Gas Combustion. Energies 2025, 18, 2285. [Google Scholar] [CrossRef]
- Jansen, D.; Gazzani, M.; Manzolini, G.; van Dijk, E.; Carbo, M. Pre-Combustion CO2 Capture. Int. J. Greenh. Gas Control 2015, 40, 167–187. [Google Scholar] [CrossRef]
- Adanez, J.; Abad, A.; Garcia-Labiano, F.; Gayan, P.; de Diego, L.F. Progress in Chemical-Looping Combustion and Reforming Technologies. Prog. Energy Combust. Sci. 2012, 38, 215–282. [Google Scholar] [CrossRef]
- Zylka, A.; Krzywanski, J.; Czakiert, T.; Idziak, K.; Sosnowski, M.; de Souza-Santos, M.L.; Sztekler, K.; Nowak, W. Modeling of the Chemical Looping Combustion of Hard Coal and Biomass Using Ilmenite as the Oxygen Carrier. Energies 2020, 13, 5394. [Google Scholar] [CrossRef]
- Zylka, A.; Krzywanski, J.; Czakiert, T.; Idziak, K.; Sosnowski, M.; Grabowska, K.; Prauzner, T.; Nowak, W. The 4th Generation of CeSFaMB in Numerical Simulations for CuO-Based Oxygen Carrier in CLC System. Fuel 2019, 255, 115776. [Google Scholar] [CrossRef]
- Adánez, J.; Abad, A. Chemical-Looping Combustion: Status and Research Needs. Proc. Combust. Inst. 2019, 37, 4303–4317. [Google Scholar] [CrossRef]
- Azimi, G.; Leion, H.; Rydén, M.; Mattisson, T.; Lyngfelt, A. Investigation of Different Mn–Fe Oxides as Oxygen Carrier for Chemical-Looping with Oxygen Uncoupling (CLOU). Energy Fuels 2013, 27, 367–377. [Google Scholar] [CrossRef]
- Kolbitsch, P.; Bolhàr-Nordenkampf, J.; Pröll, T.; Hofbauer, H. Operating Experience with Chemical Looping Combustion in a 120kW Dual Circulating Fluidized Bed (DCFB) Unit. Int. J. Greenh. Gas Control 2010, 4, 180–185. [Google Scholar] [CrossRef]
- Lyngfelt, A.; Linderholm, C. Chemical-Looping Combustion of Solid Fuels—Status and Recent Progress. Energy Procedia 2017, 114, 371–386. [Google Scholar] [CrossRef]
- Ströhle, J.; Orth, M.; Epple, B. Design and Operation of a 1MWth Chemical Looping Plant. Appl. Energy 2014, 113, 1490–1495. [Google Scholar] [CrossRef]
- Wang, X.; Gong, Y.; Wang, X.; Jin, B. Experimental and Kinetics Investigations of Separated-Gasification Chemical Looping Combustion of Char with an Iron Ore as the Oxygen Carrier. Fuel Process. Technol. 2020, 210, 106554. [Google Scholar] [CrossRef]
- Cuadrat, A.; Abad, A.; Adánez, J.; de Diego, L.F.; García-Labiano, F.; Gayán, P. Behavior of Ilmenite as Oxygen Carrier in Chemical-Looping Combustion. Fuel Process. Technol. 2012, 94, 101–112. [Google Scholar] [CrossRef]
- Ohlemüller, P.; Reitz, M.; Ströhle, J.; Epple, B. Investigation of Chemical Looping Combustion of Natural Gas at 1 MWth Scale. Proc. Combust. Inst. 2019, 37, 4353–4360. [Google Scholar] [CrossRef]
- Nandy, A.; Loha, C.; Gu, S.; Sarkar, P.; Karmakar, M.K.; Chatterjee, P.K. Present Status and Overview of Chemical Looping Combustion Technology. Renew. Sustain. Energy Rev. 2016, 59, 597–619. [Google Scholar] [CrossRef]
- Hossain, M.M.; de Lasa, H.I. Chemical-Looping Combustion (CLC) for Inherent CO2 Separations—A Review. Chem. Eng. Sci. 2008, 63, 4433–4451. [Google Scholar] [CrossRef]
- Adánez, J.; Cuadrat, A.; Abad, A.; Gayán, P.; de Diego, L.F.; García-Labiano, F. Ilmenite Activation during Consecutive Redox Cycles in Chemical-Looping Combustion. Energy Fuels 2010, 24, 1402–1413. [Google Scholar] [CrossRef]
- Sedor, K.E.; Hossain, M.M.; de Lasa, H.I. Reactivity and Stability of Ni/Al2O3 Oxygen Carrier for Chemical-Looping Combustion (CLC). Chem. Eng. Sci. 2008, 63, 2994–3007. [Google Scholar] [CrossRef]
- Jin, H.; Ishida, M. A New Type of Coal Gas Fueled Chemical-Looping Combustion. Fuel 2004, 83, 2411–2417. [Google Scholar] [CrossRef]
- Shulman, A.; Linderholm, C.; Mattisson, T.; Lyngfelt, A. High Reactivity and Mechanical Durability of NiO/NiAl2O4 and NiO/NiAl2O4/MgAl2O4 Oxygen Carrier Particles Used for More than 1000 h in a 10 kW CLC Reactor. Ind. Eng. Chem. Res. 2009, 48, 7400–7405. [Google Scholar] [CrossRef]
- Yazdanpanah, M.M.; Forret, A.; Gauthier, T.; Delebarre, A. Modeling of CH4 Combustion with NiO/NiAl2O4 in a 10kWth CLC Pilot Plant. Appl. Energy 2014, 113, 1933–1944. [Google Scholar] [CrossRef]
- Hossain, M.M.; Lopez, D.; Herrera, J.; de Lasa, H.I. Nickel on Lanthanum-Modified γ-Al2O3 Oxygen Carrier for CLC: Reactivity and Stability. Catal. Today 2009, 143, 179–186. [Google Scholar] [CrossRef]
- Silvester, L.; Antzara, A.; Boskovic, G.; Heracleous, E.; Lemonidou, A.A.; Bukur, D.B. NiO Supported on Al2O3 and ZrO2 Oxygen Carriers for Chemical Looping Steam Methane Reforming. Int. J. Hydrogen Energy 2015, 40, 7490–7501. [Google Scholar] [CrossRef]
- Ishida, M.; Jin, H. A Novel Chemical-Looping Combustor without NOx Formation. Ind. Eng. Chem. Res. 1996, 35, 2469–2472. [Google Scholar] [CrossRef]
- Zylka, A.; Krzywanski, J.; Czakiert, T.; Idziak, K.; Kulicki, K.; Jankowska, S.; Nowak, W. Numerical Simulations of Fluidization Dynamics in a Hot Model of a CLC Process. E3S Web Conf. 2017, 13, 9. [Google Scholar] [CrossRef]
- de Diego, L.F.; García-Labiano, F.; Adánez, J.; Gayán, P.; Abad, A.; Corbella, B.M.; María Palacios, J. Development of Cu-Based Oxygen Carriers for Chemical-Looping Combustion. Fuel 2004, 83, 1749–1757. [Google Scholar] [CrossRef]
- Chuang, S.Y.; Dennis, J.S.; Hayhurst, A.N.; Scott, S.A. Development and Performance of Cu-Based Oxygen Carriers for Chemical-Looping Combustion. Combust. Flame 2008, 154, 109–121. [Google Scholar] [CrossRef]
- Chuang, S.Y.; Dennis, J.S.; Hayhurst, A.N.; Scott, S.A. Kinetics of the Chemical Looping Oxidation of CO by a Co-Precipitated Mixture of CuO and Al2O3. Proc. Combust. Inst. 2009, 32, 2633–2640. [Google Scholar] [CrossRef]
- Adánez, J.; Abad, A.; Mendiara, T.; Gayán, P.; de Diego, L.F.; García-Labiano, F. Chemical Looping Combustion of Solid Fuels. Prog. Energy Combust. Sci. 2018, 65, 6–66. [Google Scholar] [CrossRef]
- Cho, P.; Mattisson, T.; Lyngfelt, A. Comparison of Iron-, Nickel-, Copper- and Manganese-Based Oxygen Carriers for Chemical-Looping Combustion. Fuel 2004, 83, 1215–1225. [Google Scholar] [CrossRef]
- Yüzbasi, N.S.; Kierzkowska, A.; Müller, C. Development of Fe2O3-Based, Al2O3-Stabilized Oxygen Carriers Using Sol-Gel Technique for H2 Production via Chemical Looping. Energy Procedia 2017, 114, 436–445. [Google Scholar] [CrossRef]
- Hatanaka, T.; Yoda, Y. Attrition of Ilmenite Ore during Consecutive Redox Cycles in Chemical Looping Combustion. Powder Technol. 2019, 356, 974–979. [Google Scholar] [CrossRef]
- Mendiara, T.; Gayán, P.; Abad, A.; García-Labiano, F.; de Diego, L.F.; Adánez, J. Characterization for Disposal of Fe-Based Oxygen Carriers from a CLC Unit Burning Coal. Fuel Process. Technol. 2015, 138, 750–757. [Google Scholar] [CrossRef]
- Idziak, K.; Czakiert, T.; Krzywanski, J.; Zylka, A.; Kozlowska, M.; Nowak, W. Safety and Environmental Reasons for the Use of Ni-, Co-, Cu-, Mn- and Fe-Based Oxygen Carriers in CLC/CLOU Applications: An Overview. Fuel 2020, 268, 117245. [Google Scholar] [CrossRef]
- Sub Kwak, B.; Park, N.-K.; Ryu, H.-J.; Baek, J.-I.; Kang, M. Reduction and Oxidation Performance Evaluation of Manganese-Based Iron, Cobalt, Nickel, and Copper Bimetallic Oxide Oxygen Carriers for Chemical-Looping Combustion. Appl. Therm. Eng. 2018, 128, 1273–1281. [Google Scholar] [CrossRef]
- Mukherjee, S.; Kumar, P.; Yang, A.; Fennell, P. A Systematic Investigation of the Performance of Copper-, Cobalt-, Iron-, Manganese- and Nickel-Based Oxygen Carriers for Chemical Looping Combustion Technology through Simulation Models. Chem. Eng. Sci. 2015, 130, 79–91. [Google Scholar] [CrossRef]
- Song, T.; Shen, L. Review of Reactor for Chemical Looping Combustion of Solid Fuels. Int. J. Greenh. Gas Control 2018, 76, 92–110. [Google Scholar] [CrossRef]
- Yang, Z.; Song, G.; Cai, J.; Zhu, Z. Investigation of Heat Transfer Characteristics and Optimization Design of Platen Superheaters in the Furnace of a 350 MWe Supercritical CFB Boiler. Appl. Therm. Eng. 2025, 258, 124613. [Google Scholar] [CrossRef]
- Lyngfelt, A. Chemical Looping Combustion: Status and Development Challenges. Energy Fuels 2020, 34, 9077–9093. [Google Scholar] [CrossRef]
- Lyngfelt, A. Oxygen Carriers for Chemical Looping Combustion—4000 h of Operational Experience. Oil Gas Sci. Technol. Rev. IFP Energ. Nouv. 2011, 66, 161–172. [Google Scholar] [CrossRef]
- Tang, M.; Xu, L.; Fan, M. Progress in Oxygen Carrier Development of Methane-Based Chemical-Looping Reforming: A Review. Appl. Energy 2015, 151, 143–156. [Google Scholar] [CrossRef]
- Duan, L.; Lu, D. Fluidized Bed Reactors for Carbon Capture: A Review of Advancing Combustion and Sorption Techniques for Decarbonization; Springer Nature: Berlin/Heidelberg, Germany, 2025; ISBN 978-981-9602-74-2. [Google Scholar]
- E Rabbi, F.; Ullah, A.; Hassan, A.; Zaman, M.; Zeng, L.; Xin, F. CFD Modelling of a Chemical Looping Combustion System−Exploring the Potential of Natural Oxygen Carriers. Fuel 2024, 373, 132278. [Google Scholar] [CrossRef]
- Linderholm, C.; Lyngfelt, A.; Dueso, C. Chemical-Looping Combustion of Solid Fuels in a 10 kW Reactor System Using Natural Minerals as Oxygen Carrier. Energy Procedia 2013, 37, 598–607. [Google Scholar] [CrossRef]
- Mei, D.; Lyngfelt, A.; Mattisson, T.; Linderholm, C. Oxy-Polishing of Gas from Chemical Looping Combustion: Fuel-Nitrogen Transformation and Model-Aided Gas Purity Optimization. Chem. Eng. J. 2025, 509, 161267. [Google Scholar] [CrossRef]
- Charitos, A.; Hawthorne, C.; Bidwe, A.R.; Korovesis, L.; Schuster, A.; Scheffknecht, G. Hydrodynamic Analysis of a 10 kWth Calcium Looping Dual Fluidized Bed for Post-Combustion CO2 Capture. Powder Technol. 2010, 200, 117–127. [Google Scholar] [CrossRef]
- Arias, B.; Alvarez Criado, Y.; Méndez, A.; Marqués, P.; Finca, I.; Abanades, J.C. Pilot Testing of Calcium Looping at TRL7 with CO2 Capture Efficiencies toward 99%. Energy Fuels 2024, 38, 14757–14764. [Google Scholar] [CrossRef]
- Langørgen, Ø.; Saanum, I.; Haugen, N.E.L. Chemical Looping Combustion of Methane Using a Copper-Based Oxygen Carrier in a 150 kW Reactor System. Energy Procedia 2017, 114, 352–360. [Google Scholar] [CrossRef]
- Abanades, S.; Wang, X.; Chuayboon, S. Chemical Looping CH4 Reforming Through Isothermal Two-Step Redox Cycling of SrFeO3 Oxygen Carrier in a Tubular Solar Reactor. Molecules 2025, 30, 1076. [Google Scholar] [CrossRef] [PubMed]
- Dahl, I.M.; Bakken, E.; Larring, Y.; Spjelkavik, A.I.; Håkonsen, S.F.; Blom, R. On the Development of Novel Reactor Concepts for Chemical Looping Combustion. Energy Procedia 2009, 1, 1513–1519. [Google Scholar] [CrossRef]
- Wang, C.; Lyu, Q. Combined Removal of NOx and SO2 in Circulating Fluidized Beds with Post-Combustion. Processes 2025, 13, 1496. [Google Scholar] [CrossRef]
- Czakiert, T.; Idziak, K.; Zylka, A.; Krzywanski, J.; Kulicki, K.; Jankowska, S.; Nowak, W. Combustion Chamber of a Fluidized-Bed Duo-Reactor with CLOU-Type Oxygen Carriers for Solid Fuel Combustion (Pl: Komora Paleniskowa Duo-Reaktora Fluidalnego z Nośnikami Tlenu Typu CLOU Dla Spalania Paliw Stałych). Patent PL 232612, 23 March 2017. [Google Scholar]
- Ohlemüller, P.; Busch, J.-P.; Reitz, M.; Ströhle, J.; Epple, B. Chemical-Looping Combustion of Hard Coal: Autothermal Operation of a 1 MWth Pilot Plant. J. Energy Resour. Technol. 2016, 138, 042203. [Google Scholar] [CrossRef]
- Krzywanski, J.; Czakiert, T.; Nowak, W.; Shimizu, T.; Ashraf, W.M.; Zylka, A.; Grabowska, K.; Sosnowski, M.; Skrobek, D.; Sztekler, K.; et al. Towards Cleaner Energy: An Innovative Model to Minimize NOx Emissions in Chemical Looping and CO2 Capture Technologies. Energy 2024, 312, 133397. [Google Scholar] [CrossRef]
Feature | Conventional DFB (e.g., DCFB) | Rotary Reactor | Proposed Conveyor-Based Reactor |
---|---|---|---|
Physical separation of the oxygen carrier from fuel/ash | No | Partial (gas sealing zones) | Yes |
Control of carrier residence time | Limited | Possible | Yes |
Risk of carrier loss via bottom ash | High | Low | Very low |
Typical CO2 capture efficiency [%] | 85–95 | 90–96 | ≥98 * |
Mechanical complexity | Moderate | High | Low |
Risk of inter-zone gas leakage | Low–moderate | High | Low |
Maintenance requirements | Medium | High | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zylka, A.; Krzywanski, J.; Czakiert, T.; Sosnowski, M.; Grabowska, K.; Skrobek, D.; Lasek, L. Improving CO2 Capture Efficiency Through Novel CLOU-Based Fuel Reactor Configuration in Chemical Looping Combustion. Energies 2025, 18, 4640. https://doi.org/10.3390/en18174640
Zylka A, Krzywanski J, Czakiert T, Sosnowski M, Grabowska K, Skrobek D, Lasek L. Improving CO2 Capture Efficiency Through Novel CLOU-Based Fuel Reactor Configuration in Chemical Looping Combustion. Energies. 2025; 18(17):4640. https://doi.org/10.3390/en18174640
Chicago/Turabian StyleZylka, Anna, Jaroslaw Krzywanski, Tomasz Czakiert, Marcin Sosnowski, Karolina Grabowska, Dorian Skrobek, and Lukasz Lasek. 2025. "Improving CO2 Capture Efficiency Through Novel CLOU-Based Fuel Reactor Configuration in Chemical Looping Combustion" Energies 18, no. 17: 4640. https://doi.org/10.3390/en18174640
APA StyleZylka, A., Krzywanski, J., Czakiert, T., Sosnowski, M., Grabowska, K., Skrobek, D., & Lasek, L. (2025). Improving CO2 Capture Efficiency Through Novel CLOU-Based Fuel Reactor Configuration in Chemical Looping Combustion. Energies, 18(17), 4640. https://doi.org/10.3390/en18174640