Social Perception of Environmental and Functional Aspects of Electric Vehicles
Abstract
1. Introduction
1.1. Climate Change as a Global Issue of Strategic Importance to the World
1.2. The Depletion of Fossil Fuels as a Growing Challenge for Human Civilisation
1.3. Electromobility as a Response to Climate Change and Fossil Fuel Depletion
- The principles for the development and operation of infrastructure for the use of alternative fuels in transport, including the technical requirements that such infrastructure must meet;
- The obligations of public entities regarding the development of alternative fuels infrastructure;
- The information obligations related to alternative fuels;
- The conditions for the operation of clean transport zones;
- The national policy framework for the development of alternative fuels infrastructure and the manner of its implementation.
2. Materials and Methods
2.1. Research Objectives and Hypotheses
- The extent to which expert opinions on electric vehicles have diffused among respondents is substantial;
- The extent of diffusion of expert opinions regarding the functionality of electric vehicles is significantly higher than the diffusion of expert opinions concerning their environmental impact;
- The material situation (respondents’ economic status) is the strongest factor differentiating the distribution of respondents’ FSI (Statement Significance Index) values regarding electric vehicles.
2.2. Characteristics of the Object and the Subject of This Study
2.3. Characteristics of the Research Area
2.4. Characteristics of the Research Instrument
2.5. Characteristics of Statistical Methods Used in Data Analysis
3. Discussion and Analysis of the Study Results
3.1. Variation in the Distribution of Opinions According to the Sociodemographic Characteristics of Respondents
3.2. Differentiation of the FSI According to the Sociodemographic Characteristics of Respondents
4. Summary
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Robaina, M.; Neves, A. Complete decomposition analysis of CO2 emissions intensity in the transport sector in Europe. Res. Transp. Econ. 2021, 90, 101074. [Google Scholar] [CrossRef]
- Widdershoven, C. Hydrocarbons during energy transition: From peak oil supply to peak oil demand and investment? Is energy security at risk? In Handbook of Sustainable Politics and Economics of Natural Resources; Edward Elgar Publishing: Cheltenham, UK, 2021; pp. 376–392. [Google Scholar]
- Dereń, K.; Owczarek, W. Elektromobilność w Europie—perspektywy jej wdrożenia w Polsce. Zeszyty Naukowe Politechniki Poznańskiej. Organizacja i Zarządzanie 2021, 84, 19–30. [Google Scholar] [CrossRef]
- Janik, A.; Ryszko, A.; Szafraniec, M. Determinants of the EU Citizens’ Attitudes towards the European Energy Union Priorities. Energies 2021, 14, 5237. [Google Scholar] [CrossRef]
- Urbańska, W. Elektromobilność a zrównoważona gospodarka surowcami—Wyzwania i perspektywy. Gaz, Woda i Technika Sanitarna, 11–18 March 2023. [Google Scholar] [CrossRef]
- Kanit, H.; Sawangphruk, M. Sustainable Reuse and Recycling of Spent Li-ion Batteries from Electric Vehicles: Chemical, Environmental, and Economical Perspectives. Glob. Chall. 2023, 7, 2000212. [Google Scholar] [CrossRef]
- Gavin, H.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S.; et al. Recycling Lithium-Ion Batteries from Electric Vehicles. Nature 2019, 575, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Sobianowska-Turek, A.; Urbańska, W.; Janicka, A.; Zawiślak, M.; Matla, J. The Necessity of Recycling of Waste Li-ion Batteries Used in Electric Vehicles as Objects Posing a Threat to Human Health and the Environment. Recycling 2021, 6, 35. [Google Scholar] [CrossRef]
- Kaushik, Y.; Pinisetty, D.; Daoud, A.; Gupta, N. Recycling of Li-ion and Lead-Acid Batteries: A Review. J. Indian Inst. Sci. 2022, 102, 281–295. [Google Scholar] [CrossRef]
- KaoDui, L.; Kongkuah, M. The Strategic Role of Circular Economy Innovations and Stakeholder Engagement in Advancing Responsible Production and Consumption. Bus. Strategy Environ. 2025, 34, 5947–5966. [Google Scholar] [CrossRef]
- Nauka o Klimacie. Bezdyskusyjne—Nowy Raport IPCC o Spowodowanym Przez Człowieka Ociepleniu Klimatu. Available online: https://naukaoklimacie.pl/aktualnosci/bezdyskusyjne-nowy-raport-ipcc-o-spowodowanym-przez-czlowieka-ociepleniu-klimatu-488/ (accessed on 29 October 2024).
- Gumuła, S.; Hudy, W.; Piaskowska-Silarska, M.; Pytel, K. The Effect of Greenhouse Gases and Natural Factors on the Changes in Earth Temperature. Przemysł Chem. 2015, 94, 1515–1517. [Google Scholar] [CrossRef]
- NASA Climate Change: Vital Signs of the Planet. Sea Level. Available online: https://climate.nasa.gov/vital-signs/sea-level/ (accessed on 29 October 2024).
- Popkiewicz, M. Zrozumieć Transformację Energetyczną. Od Depresji Do Wizji Albo Jak Wykopać Się z Dziury, w Której Jesteśmy; Wydawnictwo Sonia Draga Sp. z o.o.: Katowice, Poland, 2022. [Google Scholar]
- Psistaki, K.; Tsantopoulos, G.; Paschalidou, A.K. An Overview of the Role of Forests in Climate Change Mitigation. Sustainability 2024, 16, 6089. [Google Scholar] [CrossRef]
- Mohajan, H.K. Greenhouse Gas Emissions, Global Warming and Climate Change. In Proceedings of the 15th Chittagong Conference on Mathematical Physics, Jamal Nazrul Islam Research Centre for Mathematical and Physical Sciences (JNIRCMPS), Chittagong, Bangladesh, 16 March 2017; Volume 16. [Google Scholar]
- Höök, M.; Tang, X. Depletion of Fossil Fuels and Anthropogenic Climate Change—A Review. Energy Policy 2013, 52, 797–809. [Google Scholar] [CrossRef]
- Baldwin, A. Climate Change, Migration, and the Crisis of Humanism. Wiley Interdiscip. Rev. Clim. Change 2017, 8, e460. [Google Scholar] [CrossRef]
- Cowie, J. Zmiany Klimatyczne: Przyczyny, Przebieg i Skutki dla Człowieka; Wydawnictwo Uniwersytetu Warszawskiego: Warszawa, Poland, 2009. [Google Scholar] [CrossRef]
- Global Monitoring Laboratory-Carbon Cycle Greenhouse Gases. Available online: https://gml.noaa.gov/ccgg/ (accessed on 29 October 2024).
- Brdulak, J.; Pawlak, P. Elektromobilność czynnikiem zmian jakościowych polskiego transportu samochodowego. Kwart. Nauk. O Przedsiębiorstwie 2021, 58, 31–42. [Google Scholar] [CrossRef]
- Nauka o Klimacie. Najwięksi Emitenci CO2—Przegląd. Available online: https://naukaoklimacie.pl/aktualnosci/najwieksi-emitenci-co2-przeglad-431/ (accessed on 29 October 2024).
- Nauka o Klimacie. Mit: Wulkany Emitują Więcej Dwutlenku Węgla Niż Człowiek. Available online: https://naukaoklimacie.pl/fakty-i-mity/mit-wulkany-emituja-wiecej-dwutlenku-wegla-niz-czlowiek-58/ (accessed on 29 October 2024).
- World Meteorological Organization. Greenhouse Gas Concentrations Hit Record High Again. Available online: https://wmo.int/news/media-centre/greenhouse-gas-concentrations-hit-record-high-again (accessed on 29 October 2024).
- Deppeler, S.L.; Davidson, A.T. Southern Ocean Phytoplankton in a Changing Climate. Front. Mar. Sci. 2017, 4, 40. [Google Scholar] [CrossRef]
- KOBiZE. Inwentaryzacje Krajowe: NIR-2014-PL-v1.3. Available online: http://www.kobize.pl/uploads/materialy/Inwentaryzacje_krajowe/2014/NIR-2014-PL-v1.3.pdf (accessed on 29 October 2024).
- Smil, V. Energy and Civilization: A History; MIT Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Arutyunov, V.S. The Concept of Sustainable Development and Real Challenges of Civilization. Her. Russ. Acad. Sci. 2021, 91, 102–110. [Google Scholar] [CrossRef]
- Palmer, G.; Floyd, J. Energy Storage and Civilization: A Systems Approach; Springer Nature: Cham, Switzerland, 2020; Volume 40. [Google Scholar]
- Wiech, J. Energetyka po Prostu; Wydawnictwo ZNAK: Kraków, Poland, 2023. [Google Scholar]
- Frużyński, A. Zarys Dziejów Górnictwa Węgla Kamiennego w Polsce; Muzeum Górnictwa Węglowego: Zabrze, Poland, 2012. [Google Scholar]
- Grove, J.M. The Initiation of the Little Ice Age in Regions Round the North Atlantic. Clim. Change 2001, 48, 53–82. [Google Scholar] [CrossRef]
- Kalghatgi, G.; Levinsky, H.; Colket, M. Future Transportation Fuels. Prog. Energy Combust. Sci. 2018, 69, 103–105. [Google Scholar] [CrossRef]
- Hafezi, R.; Akhavan, A.; Pakseresht, S.; Wood, D.A. Global Natural Gas Demand to 2025: A Learning Scenario Development Model. Energy 2021, 224, 120167. [Google Scholar] [CrossRef]
- Kan, S.Y.; Chen, B.; Wu, X.F.; Chen, Z.M.; Chen, G.Q. Natural Gas Overview for World Economy: From Primary Supply to Final Demand via Global Supply Chains. Energy Policy 2019, 124, 215–225. [Google Scholar] [CrossRef]
- Paszkiewicz, E. Bezpieczeństwo energetyczne Unii Europejskiej w sektorze gazu ziemnego. Przegląd Geopolityczny 2018, 23, 123–143. [Google Scholar]
- Balat, M. Global Trends on Production and Utilization of Natural Gas. Energy Sources Part B 2009, 4, 333–346. [Google Scholar] [CrossRef]
- Dyrektywa Parlamentu Europejskiego i Rady 2014/94/UE z 22 października 2014 r. w sprawie rozwoju infrastruktury paliw alternatywnych. Dziennik Urzędowy Unii Europejskiej, 22 October 2014.
- Oleszko-Pyka, B. Niesamowita Historia Aut Elektrycznych BYŁY z Nami Wcześniej Niż Spalinowe. Elektromobilność. Available online: https://swiatoze.pl/zagubiona-historia-aut-elektrycznych-czy-wiesz-ze-pierwsze-auta-byly-elektryczne/ (accessed on 29 October 2024).
- Kanna, G.R.R.; Muthulakshmi, K.; Sasiraja, R.M. History of Electric Vehicle. J. Electr. Eng. 2018, 1–3. Available online: https://www.researchgate.net/profile/Gr-Rajeshkanna/publication/334050500_History_of_Electric_Vehicle/data/5d147de4a6fdcc2462a928c1/EV-History.pdf (accessed on 23 July 2025).
- Franko, M.; Danko, M.; Frivaldsky, M.; Bracinik, P. Brief Overview of the General Aspects of Electromobility. Transp. Res. Procedia 2023, 74, 854–861. [Google Scholar] [CrossRef]
- Marker, S.; Rippel, B.; Waldowski, P.; Schulz, A.; Schindle, V. Battery Electric Vehicle (BEV) or Range Extended Electric Vehicle (REEV)? —Deciding Between Different Alternative Drives Based on Measured Individual Operational Profiles. Oil Gas Sci. Technol. 2013, 68, 65–77. [Google Scholar] [CrossRef]
- Ustawa z Dnia 11 Stycznia 2018 r. o Elektromobilności i Paliwach Alternatywnych (Dz.U.2024.1289). Available online: https://sip.lex.pl/akty-prawne/dzu-dziennik-ustaw/elektromobilnosc-i-paliwa-alternatywne-18683445 (accessed on 29 October 2024).
- UKE o dostępie do internetu: W poszczególnych gminach wciąż zróżnicowany. Available online: https://samorzad.pap.pl/kategoria/telekomunikacja/uke-o-dostepie-do-internetu-w-poszczegolnych-gminach-wciaz-zroznicowany (accessed on 28 August 2024).
- BTS. Available online: https://bts.socware.pl/ (accessed on 29 October 2024).
- Polakowski, K. Samochody Elektryczne Pojazdami Najbliższej Przyszłości? Pr. Inst. Elektrotechniki 2011, 252, 19–39. [Google Scholar]
- Łebkowski, A. Samochody elektryczne—dźwięk ciszy. Masz. Elektr.—Zesz. Probl. 2016, 1, 155–159. [Google Scholar]
- Koman, G.; Kubina, M.; Varmus, M. Electromobility in the World and in Slovakia. Transp. Res. Procedia 2024, 77, 224–230. [Google Scholar] [CrossRef]
- Velho, S.R.K.; Vanderlinde, A.S.G.; Almeida, A.H.A.; Barbalho, S.C.M. Electromobility Strategy on Emerging Economies: Beyond Selling Electric Vehicles. Clean. Energy Syst. 2024, 9, 100166. [Google Scholar] [CrossRef]
- Radovic, U. Wpływ samochodów elektrycznych na polski system elektroenergetyczny, emisję CO2 oraz inne zanieczyszczenia powietrza. Zesz. Nauk. Inst. Gospod. Surowcami Miner. I Energią Pol. Akad. Nauk. 2018, 104, 69–84. [Google Scholar]
- Popiołek, S. Samochód z napędem elektrycznym a bezpieczeństwo ruchu drogowego. Autobusy Tech. Eksploat. Syst. Transp. 2017, 18, 99–108. [Google Scholar]
- Pietrzak, O.; Pietrzak, K. The Economic Effects of Electromobility in Sustainable Urban Public Transport. Energies 2021, 14, 878. [Google Scholar] [CrossRef]
- Cebulska, W. Noise Emissions in Electric Drive Vehicles on the Example of the Dacia Spring Electric Car. Int. J. Veh. Noise Vib. 2025, 20, 242–255. [Google Scholar] [CrossRef]
- Janczewski, J. Serwisowanie samochodów w wymiarze elektromobilności. Zarządzanie Innow. W Gospod. I Biznesie 2018, 2, 169–178. [Google Scholar] [CrossRef]
- Hardman, S.; Jenn, A.; Tal, G.; Axsen, J.; Beard, G.; Daina, N.; Witkamp, B. A Review of Consumer Preferences of and Interactions with Electric Vehicle Charging Infrastructure. Transp. Res. Part D Transp. Environ. 2018, 62, 508–523. [Google Scholar] [CrossRef]
- Bober, T.; Wójcik, P.; Gojayev, T. Opportunities and Barriers to the Development of Electromobility: The Perspective of Poland and Azerbaijan. Green Econ. 2023, 1, 144–151. [Google Scholar]
- Katis, C.; Karlis, A. Evolution of Equipment in Electromobility and Autonomous Driving Regarding Safety Issues. Energies 2023, 16, 1271. [Google Scholar] [CrossRef]
- Kęska, A.; Dziubek, M.; Michalik, D. The Economic Aspects of Vehicle Operation in the Context of Electromobility Strategies. Combust. Engines 2024, 196, 146–152. [Google Scholar] [CrossRef]
- Quak, H.; Nesterova, N.; van Rooijen, T.; Dong, Y. Zero Emission City Logistics: Current Practices in Freight Electromobility and Feasibility in the Near Future. Transp. Res. Procedia 2016, 14, 1506–1515. [Google Scholar] [CrossRef]
- Polacek, M. Electro Mobility and Possible Scenarios for Slovakia. Ph.D. Thesis, Technische Universität Wien, Vienna, Austria, 2018. [Google Scholar]
- Neamțu, G.; Țîțu, A.M. Electromobility and Electric Motor Vehicle—Basic Topics in the Management of Durable and Sustainable Development of Ecological Automotive Transports. J. Res. Innov. Sustain. Soc. 2021, 3, 81–94. [Google Scholar] [CrossRef]
- Jaroszyński, L. Akumulatory litowe w pojazdach elektrycznych. Przegląd Elektrotechniczny 2011, 87, 280–284. [Google Scholar]
- Straka, M.; Chovan, T.; Bindzár, P.; Žatkovič, E.; Hricová, R. Possibilities and Limitations of Electromobiles Utilization. Appl. Mech. Mater. 2015, 708, 159–164. [Google Scholar]
- Karaś, Z.; Podgórniak–Krzykacz, A. Rozwój elektromobilności w Polsce: Analiza społecznego postrzegania i akceptacji samochodów elektrycznych przez Polaków. In Rozwój Zrównoważonych, Inteligentnych i Odpornych Miejskich Systemów Transportowych—Perspektywa Mieszkańców; Podgórniak-Krzykacz, A., Przywojska, J., Eds.; Wydawnictwo Uniwersytetu Łódzkiego: Łódź, Poland, 2024; pp. 133–150. [Google Scholar]
- Kowalska–Pyzalska, A.; Kott, M.; Skowrońska–Szmer, A.; Kott, J.; Michalski, R. Samochody elektryczne nie dla Polaka? Badanie empiryczne opinii i oczekiwań potencjalnych nabywców. Przegląd Organ. 2022, 9, 25–32. [Google Scholar]
- Zirganos, A.; Orfanou, F.; Vlahogianni, E.I.; Yannis, G. Evaluating Good Practices for the Promotion of Electromobility Using Multi Criteria Analysis Methods. Case Stud. Transp. Policy 2022, 10, 1602–1610. [Google Scholar] [CrossRef]
- Janczewski, J. Determinanty rozwoju elektromobilności. Wybrane kwestie. In Zarządzanie Innowacyjne w Gospodarce i Biznesie; Ślusarczyk, Z., Ed.; Wydawnictwo Akademii Humanistyczno-Ekonomicznej: Łódź, Poland, 2017. [Google Scholar]
- Fasiecka, O.; Marek, M. Odnawialne źródła energii a rozwój elektromobilności. Probl. Transp. I Logistyki 2018, 44, 7–14. [Google Scholar] [CrossRef]
- Skorupska, A. Car-sharing—krok w stronę elektromobilności. Pol. Inst. Spraw. Międzynarodowych—Biul. 2018, 59, 1–2. [Google Scholar]
- Frenzel, B.; Kurzweil, P.; Rönnebeck, H. Electromobility Concept for Racing Cars Based on Lithium-Ion Batteries and Supercapacitors. J. Power Sources 2011, 196, 5364–5376. [Google Scholar] [CrossRef]
- Lewicki, W. Studium badawcze wpływu kosztów napraw eksploatacyjnych samochodów osobowych na rozwój elektromobilności w Polsce. Arch. Automot. Eng.—Arch. Motoryz. 2017, 78, 107–116. [Google Scholar]
- Danilecki, K.; Smurawski, P.; Urbanowicz, K. Optimization of Car Use Time for Different Maintenance and Repair Scenarios Based on Life Cycle Assessment. Appl. Sci. 2023, 13, 9843. [Google Scholar] [CrossRef]
- Bartłomiejczyk, M.; Kołacz, R. The Reduction of Auxiliaries Power Demand: The Challenge for Electromobility in Public Transportation. J. Clean. Prod. 2020, 252, 119776. [Google Scholar] [CrossRef]
- Łomnicki, A. Wprowadzenie Do Statystyki Dla Przyrodników; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2014. [Google Scholar]
- Gaworski, M.; Borowski, P.F.; Zajkowska, M. Attitudes of a Group of Young Polish Consumers towards Selected Features of Dairy Products. Agron. Res. 2021, 19 (Suppl. 2), 1023–1038. [Google Scholar] [CrossRef]
- Lamm, A.J.; Lamm, K.W.; Trojan, S.; Sanders, C.E.; Byrd, A.R. A Needs Assessment to Inform Research and Outreach Efforts for Sustainable Agricultural Practices and Food Production in the Western United States. Foods 2023, 12, 1630. [Google Scholar] [CrossRef]
- Loengbudnark, W.; Khalilpour, K.; Bharathy, G.; Taghikhah, F.; Voinov, A. Battery and Hydrogen-Based Electric Vehicle Adoption: A Survey of Australian Consumers Perspective. Case Stud. Transp. Policy 2022, 10, 2451–2463. [Google Scholar] [CrossRef]
- Mynarska, M. Wykorzystanie teorii planowanego zachowania w celu wyjaśnienia zróżnicowania intencji rodzicielskich—ocena operacjonalizacji i dobroci pomiaru zmiennych. Stud. Psychol. UKSW 2012, 12, 83–100. [Google Scholar]
- Hassan, L.M.; Walsh, G.; Shiu, E.M.; Hastings, G.; Harris, F. Modeling Persuasion in Social Advertising: A Study of Responsible Thinking in Antismoking Promotion in Eight Eastern EU (European Union) Member States. J. Advert. 2007, 36, 15–31. [Google Scholar] [CrossRef]
- Iftikhar, M.; Aziz, F.; Yousaf, Z. Role of Breast Cancer Awareness Advertising Educational Messages in Educating Women to Develop a Precautionary Behavior. SJESR 2019, 2, 66–80. [Google Scholar] [CrossRef]
- Westin, K.; Jansson, J.; Nordlund, A. The Importance of Socio-Demographic Characteristics, Geographic Setting, and Attitudes for Adoption of Electric Vehicles in Sweden. Travel Behav. Soc. 2018, 13, 118–127. [Google Scholar] [CrossRef]
- Sobiech-Grabka, K.; Stankowska, A.; Jerzak, K. Determinants of Electric Cars Purchase Intention in Poland: Personal Attitudes v. Econ. Argum. Energ. 2022, 15, 3078. [Google Scholar] [CrossRef]
- Hossain, M.S.; Kumar, L.; Islam, M.M.; Selvaraj, J. A Comprehensive Review on the Integration of Electric Vehicles for Sustainable Development. J. Adv. Transp. 2022, 2022, 3868388. [Google Scholar] [CrossRef]
- Kłopotek, K.; Ocieczek, A. Public Perception of Innovative Technical Solutions for the Development of the ‘Sponge City’ Concept in Poland: A Case Study of the Tri-City Area. Sustainability 2025, 17, 2380. [Google Scholar] [CrossRef]
- König, A.; Nicoletti, L.; Schröder, D.; Wolff, S.; Waclaw, A.; Lienkamp, M. An Overview of Parameter and Cost for Battery Electric Vehicles. World Electr. Veh. J. 2021, 12, 21. [Google Scholar] [CrossRef]
- Kawgan-Kagan, I. Are Women Greener than Men? A Preference Analysis of Women and Men from Major German Cities over Sustainable Urban Mobility. Transp. Res. Interdiscip. Perspect. 2020, 8, 100236. [Google Scholar] [CrossRef]
- Ling, Z.; Cherry, C.R.; Wen, Y. Determining the Factors that Influence Electric Vehicle Adoption: A Stated Preference Survey Study in Beijing, China. Sustainability 2021, 13, 11719. [Google Scholar] [CrossRef]
- Saglam, M.S.; Yilanci, V.; Kongkuah, M. Decoupling economic growth and carbon emissions: A time-varying analysis of the environmental kuznets curve hypothesis in France (1890–2019) MS Saglam et al. Environ. Dev. Sustain. 2025, 1–33. [Google Scholar] [CrossRef]
Population Parameter | Number of Individuals | Percentage of Individuals (%) | |
---|---|---|---|
Total | 503 | 100 | |
Gender | W | 343 | 68.2 |
M | 160 | 31.8 | |
Age | 18–25 | 246 | 48.9 |
26–36 | 149 | 29.6 | |
37–78 | 108 | 21.5 | |
Level of education | Primary/Vocational education | 33 | 6.56 |
Secondary education | 186 | 36.97 | |
Higher education | 284 | 56.46 | |
Field of education | Technical | 258 | 51.29 |
Natural Sciences | 97 | 19.28 | |
Humanities and Social Sciences | 148 | 29.42 | |
Economic Status | Below Average | 49 | 9.74 |
Average | 338 | 67.19 | |
Above Average | 116 | 23.06 |
No. | Statement on the Environmental Impact of BEVs | Source of Opinion |
---|---|---|
1. | BEVs do not emit air pollutants (gases). | [3,46,47,48,49] |
2. | BEVs do not generate significant noise pollution. | [47,50,51,52,53] |
3. | BEVs do not contaminate the environment with operational fluids. | [54,55,56,57,58] |
4. | BEVs do not negatively affect the odour of the air. | [49,50,59,60,61] |
5. | BEVs pose a safety risk due to their silent operation at low speeds. | [47,50,51,52,53] |
6. | BEVs have an environmental impact when battery disposal becomes necessary. | [48,62,63,64] |
No. | Statement on the Functional Aspects of BEVs | Source of Opinion |
7. | BEVs have a relatively limited driving range. | [41,51,64,65,66] |
8. | BEVs are allowed to park free of charge in urban areas. | [3,48,64,67] |
9. | BEVs are permitted to use bus lanes. | [3,64,68,69] |
10. | BEVs require extended charging time. | [51,55,62,70] |
11. | The cost of repairing BEVs is high. | [3,51,58,71,72] |
12. | BEVs experience accelerated battery depletion at low temperatures. | [41,51,62,73] |
Opinion | Factors Differentiating the Examined Group of Respondents | |||||
---|---|---|---|---|---|---|
Gender | Age | Education Level | Field of Education | Economic Status | ||
1. | environmental | χobs = 28.0494 χcrit = 9.4877 p = 1.2 × 10−5 | χobs = 27.0109 χcrit = 15.5073 p = 0.001 | χobs = 15.2999 χcrit = 15.5073 p = 0.054 | χobs = 12.0819 χcrit = 15.5073 p = 0.148 | χobs = 21.0396 χcrit = 15.5073 p = 0.007 |
2. | χobs = 8.8229 χcrit = 9.4877 p = 0.066 | χobs = 3.8436 χcrit = 15.5073 p = 0.871 | χobs = 34.3773 χcrit = 15.5073 p = 3.5 × 10−5 | χobs = 10.2522 χcrit = 15.5073 p = 0.248 | χobs = 22.0176 χcrit = 15.5073 p = 0.005 | |
3. | χobs = 11.1505 χcrit = 9.4877 p = 0.025 | χobs = 7.9582 χcrit = 15.5073 p = 0.438 | χobs = 5.2226 χcrit = 15.5073 p = 0.734 | χobs = 11.5978 χcrit = 15.5073 p = 0.170 | χobs = 13.4018 χcrit = 15.5073 p = 0.099 | |
4. | χobs = 13.8984 χcrit = 9.4877 p = 0.008 | χobs = 12.3917 χcrit = 15.5073 p = 0.135 | χobs = 16.1153 χcrit = 15.5073 p = 0.041 | χobs = 15.9817 χcrit = 15.5073 p = 0.043 | χobs = 17.3842 χcrit = 15.5073 p = 0.026 | |
5. | χobs = 9.9312 χcrit = 9.4877 p = 0.042 | χobs = 6.8940 χcrit = 15.5073 p = 0.548 | χobs = 8.2631 χcrit = 15.5073 p = 0.408 | χobs = 14.4685 χcrit = 15.5073 p = 0.070 | χobs = 14.1569 χcrit = 15.5073 p = 0.078 | |
6. | χobs = 7.2671 χcrit = 9.4877 p = 0.122 | χobs = 12.4277 χcrit = 15.5073 p = 0.133 | χobs = 32.5437 χcrit = 15.5073 p = 7.4 × 10−5 | χobs = 20.0948 χcrit = 15.5073 p = 0.010 | χobs = 18.0014 χcrit = 15.5073 p = 0.021 | |
7. | functional | χobs = 33.7520 χcrit = 9.4877 p = 8.4 × 10−7 | χobs = 15.5977 χcrit = 15.5073 p = 0.048 | χobs = 33.1066 χcrit = 15.5073 p = 5.9 × 10−5 | χobs = 20.7053 χcrit = 15.5073 p = 0.008 | χobs = 10.6087 χcrit = 15.5073 p = 0.225 |
8. | χobs = 11.5889 χcrit = 9.4877 p = 0.021 | χobs = 12.7449 χcrit = 15.5073 p = 0.121 | χobs = 11.8523 χcrit = 15.5073 p = 0.158 | χobs = 13.0650 χcrit = 15.5073 p = 0.110 | χobs = 19.1523 χcrit = 15.5073 p = 0.014 | |
9. | χobs = 12.4648 χcrit = 9.4877 p = 0.014 | χobs = 7.5069 χcrit = 15.5073 p = 0.483 | χobs = 18.8492 χcrit = 15.5073 p = 0.016 | χobs = 20.0579 χcrit = 15.5073 p = 0.010 | χobs = 14.3944 χcrit = 15.5073 p = 0.072 | |
10. | χobs = 11.5236 χcrit = 9.4877 p = 0.021 | χobs = 16.3176 χcrit = 15.5073 p = 0.038 | χobs = 15.0825 χcrit = 15.5073 p = 0.058 | χobs = 9.0097 χcrit = 15.5073 p = 0.342 | χobs = 7.0324 χcrit = 15.5073 p = 0.533 | |
11. | χobs = 13.9169 χcrit = 9.4877 p = 0.008 | χobs = 12.3906 χcrit = 15.5073 p = 0.135 | χobs = 37.4939 χcrit = 15.5073 p = 9.3 × 10−6 | χobs = 21.7357 χcrit = 15.5073 p = 0.005 | χobs = 23.9604 χcrit = 15.5073 p = 0.002 | |
12. | χobs = 34.6038 χcrit = 9.4877 p = 5.6 × 10−7 | χobs = 11.9872 χcrit = 15.5073 p = 0.152 | χobs = 50.5473 χcrit = 15.5073 p = 3.2 × 10−8 | χobs = 18.4488 χcrit = 15.5073 p = 0.018 | χobs = 39.8169 χcrit = 15.5073 p = 3.5 × 10−6 |
Number of Statements | 1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | 10. | 11. | 12. | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FSI | Total | 2.07 | 3.54 | 1.24 | 2.44 | 1.81 | 4.75 | 3.51 | 1.25 | 1.27 | 3.94 | 5.03 | 3.96 | |
W | 2.35 | 4.27 | 1.38 | 2.62 | 1.93 | 5.02 | 3.14 | 1.14 | 0.99 | 3.74 | 5.56 | 3.81 | ||
M | 1.65 | 2.53 | 0.98 | 2.13 | 1.60 | 4.30 | 4.44 | 1.49 | 2.24 | 4.36 | 4.16 | 4.20 | ||
18–25 | 2.28 | 3.68 | 1.3 | 2.67 | 1.58 | 4.88 | 2.98 | 1.09 | 1.12 | 3.37 | 4.53 | 3.19 | ||
26–36 | 1.66 | 3.23 | 1.13 | 1.85 | 2.17 | 4.57 | 3.03 | 1.12 | 1.28 | 4.09 | 4.8 | 5.19 | ||
37–78 | 2.31 | 3.7 | 1.24 | 3.05 | 1.97 | 4.76 | 6.75 | 1.9 | 1.69 | 5.27 | 7.3 | 4.57 | ||
P/VE | 0.69 | 0.69 | 0.77 | 0.77 | 0.71 | 1.08 | 1.18 | 0.79 | 1.1 | 1.75 | 1 | 0.67 | ||
SE | 2.23 | 2.92 | 1.17 | 2.14 | 1.82 | 3.74 | 2.13 | 1.29 | 1.34 | 2.92 | 3.26 | 3.03 | ||
HE | 2.28 | 5.28 | 1.35 | 3.12 | 2.01 | 7.48 | 6.39 | 1.3 | 1.24 | 5.61 | 10.84 | 7.9 | ||
H/SS | 1.74 | 3.37 | 1.08 | 2.23 | 1.46 | 4.47 | 2.75 | 0.97 | 0.96 | 3.36 | 4.49 | 3.08 | ||
NS | 2.15 | 2.75 | 1.54 | 2.62 | 2.08 | 4.19 | 3.5 | 1.84 | 2.04 | 3.6 | 7.44 | 4.33 | ||
TS | 2.79 | 4.54 | 1.33 | 2.81 | 2.43 | 5.79 | 5.63 | 1.5 | 1.5 | 5.67 | 4.95 | 5.81 | ||
↓BA | 0.67 | 1.18 | 0.52 | 1 | 0.73 | 1.77 | 1.47 | 0.57 | 1.07 | 2.45 | 1.47 | 0.8 | ||
↨A | 2.15 | 3.67 | 1.22 | 2.38 | 1.86 | 5 | 3.71 | 1.21 | 1.09 | 3.77 | 5.63 | 4.45 | ||
↑AA | 3.0 | 5.67 | 1.83 | 3.89 | 2.58 | 6.85 | 4.65 | 1.82 | 2.14 | 5.71 | 7.73 | 10.14 |
Gender | Age | Educational Level | Field of Education | Economic Status | |
---|---|---|---|---|---|
Environmental scale | tobs = 0.9792 tcrit(0.05; 10) = 2.2281 p = 0.3506 | Fobs(0.05,2,15) = 0.1568 Fcrit(0.05,2,15) = 3.6823 p = 0.8563 | Fobs(0.05,2,15) = 5.6216 Fcrit(0.05,2,15) = 3.6823 p = 0.0151 | Fobs(0.05,2,15) = 0.7977 Fcrit(0.05,2,15) = 3.6823 p = 0.7977 | Fobs(0.05,2,15) = 6.9531 Fcrit(0.05,2,15) = 3.6823 p = 0.0073 |
Functional scale | tobs = 0.4733 tcrit(0.05; 10) = 2.2281 p = 0.6461 | Fobs(0.05,2,15) = 1.5777 Fcrit(0.05,2,15) = 3.6823 p = 0.2388 | Fobs(0.05,2,15) = 6.3378 Fcrit(0.05,2,15) = 3.6823 p = 0.0101 | Fobs(0.05,2,15) = 1.1198 Fcrit(0.05,2,15) = 3.6823 p = 0.3522 | Fobs(0.05,2,15) = 5.2536 Fcrit(0.05,2,15) = 3.6823 p = 0.0187 |
All questionnaire | tobs = 0.2666 tcrit(0.05; 22) = 2.0739 p = 0.7923 | Fobs(0.05,2,33) = 1.2911 Fcrit(0.05,2,33) = 3.2849 p = 0.2885 | Fobs(0.05,2,33) = 11.2037 Fcrit(0.05,2,33) = 3.2849 p = 0.0002 | Fobs(0.05,2,33) = 1.7779 Fcrit(0.05,2,33) = 3.2849 p = 0.1848 | Fobs(0.05,2,33) = 11.5124 Fcrit(0.05,2,33) = 3.2849 p = 0.0002 |
Sociodemographic Variable | Total | Environmental | Functional | |
---|---|---|---|---|
Gender * | W | 2.996 ± 1.517 a | 2.928 ± 1.414 a | 3.063 ± 1.747 a |
M | 2.840 ± 1.341 a | 2.198 ± 1.155 a | 3.482 ± 1.279 a | |
Age ** | 18–25 | 2.723 ± 1.290 a | 2.732 ± 1.349 a | 2.713 ± 1.357 a |
26–36 | 2.843 ± 1.515 a | 2.435 ± 1.257 a | 3.252 ± 1.751 a | |
37–78 | 3.709 ± 2.029 a | 2.838 ± 1.270 a | 4.580 ± 2.371 a | |
Educational Level ** | P/VE | 0.933 ± 0.315 a | 0.785 ± 0.149 a | 1.082 ± 0.379 a |
SE | 2.333 ± 0.842 a | 2.337 ± 0.893 a | 2.328 ± 0.872 a | |
HE | 4.567 ± 3.160 b | 3.587 ± 2.343 b | 5.547 ± 3.764 b | |
Field of Education ** | H/SS | 2.497 ± 1.286 a | 2.392 ± 1.290 a | 2.602 ± 1.396 a |
NS | 3.136 ± 1.630 a | 2.555 ± 0.909 a | 3.717 ± 2.051 a | |
TS | 3.729 ± 1.839 a | 3.282 ± 1.605 a | 4.177 ± 2.095 a | |
Economic Status ** | ↓BA | 1.142 ± 0.570 a | 0.978 ± 0.455 a | 1.305 ± 0.666 a |
↨A | 3.012 ± 1.566 b | 2.713 ± 1.381 ab | 3.310 ± 1.811 ab | |
↑AA | 4.668 ± 2.637 b | 3.970 ± 1.931 b | 5.365 ± 3.225 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zawadzki, M.; Ocieczek, A.; Kaizer, A. Social Perception of Environmental and Functional Aspects of Electric Vehicles. Energies 2025, 18, 4583. https://doi.org/10.3390/en18174583
Zawadzki M, Ocieczek A, Kaizer A. Social Perception of Environmental and Functional Aspects of Electric Vehicles. Energies. 2025; 18(17):4583. https://doi.org/10.3390/en18174583
Chicago/Turabian StyleZawadzki, Mateusz, Aneta Ocieczek, and Adam Kaizer. 2025. "Social Perception of Environmental and Functional Aspects of Electric Vehicles" Energies 18, no. 17: 4583. https://doi.org/10.3390/en18174583
APA StyleZawadzki, M., Ocieczek, A., & Kaizer, A. (2025). Social Perception of Environmental and Functional Aspects of Electric Vehicles. Energies, 18(17), 4583. https://doi.org/10.3390/en18174583