Applications of Biochar in Fuel and Feedstock Substitution: A Review
Abstract
1. Introduction
2. Analysis of Biochar Applications
2.1. Research Trends in Biochar
2.2. Analysis of Biochar Research Themes
2.3. Analysis of Biochar Applications in the Energy Sector
3. Application of Biochar in the Energy and Resource Sector
3.1. Fuel Substitution
3.1.1. Cement Industry
3.1.2. Boiler Systems
3.1.3. Combined Heat and Power (CHP) Systems
3.2. Feedstock Substitution
3.2.1. Direct Reduction
3.2.2. Blast Furnace Industry
3.2.3. Application in Electric Arc Furnace (EAF)
3.2.4. Biochar-Mediated Reduction of Oxidative Pollutants and Metal Oxides
4. Challenge and Future Prospects
- High fixed carbon content, porous structure, and good reactivity, which enhance burnout efficiency and reaction kinetics.
- Wide availability and low carbon footprint, contributing to reduced emissions of CO2, SO2, and NOx.
- Carrier functionality, carbon sequestration capacity, and surface functionalization potential, enabling biochar to support multifunctional integration in energy systems.
- Feedstock heterogeneity leads to significant variability in the structure, ash composition, and calorific value of the resulting biochar. The lack of standardized classification and performance evaluation systems hampers its large-scale engineering use.
- High-temperature/high-pressure stability, mechanical strength, and interfacial mechanisms with burden materials and metal oxides remain poorly understood, especially in complex systems such as metallurgy and carbothermic reduction, where multiphase interactions at the char–gas–slag–metal interface are still inadequately characterized.
- In most current energy systems, biochar remains in an auxiliary or blended role, lacking system-level solutions that position it as the core functional carbon source, limiting its strategic value in mainstream energy pathways.
- It is worth noting that the applicability of biochar may vary significantly across regions due to differences in biomass resource availability, energy infrastructure, and economic conditions. A more detailed, region-specific assessment could further guide its large-scale implementation, which we identify as an important direction for future research.
- Comprehensive techno-economic assessments and life cycle analyses remain insufficiently integrated across biochar applications. For industrial adoption—particularly in fuel and feedstock substitution—considerations such as cost competitiveness, energy return on investment (EROI), and payback time should be incorporated to ensure both economic and environmental viability.
- Establishing Structure–Property Relationships: Strengthening fundamental research on feedstock–structure–performance correlations to develop predictive models and application evaluation frameworks, enabling “on-demand design and targeted preparation” of biochar.
- Optimizing Pyrolysis Techniques: Developing advanced pyrolysis methods (e.g., microwave-assisted, plasma-enhanced, and electric field-regulated processes) to enhance structural ordering and energy efficiency while reducing production costs.
- Elucidating Reaction Mechanisms: Advancing multiscale reaction kinetics and interfacial studies, particularly in high-complexity processes such as carbothermal reduction (CTR), metal reduction, and environmental catalysis, with a focus on reaction pathways and electron transfer mechanisms.
- Integrating Cross-Cutting Technologies: Promoting synergies between biochar and hydrogen energy, carbon capture, utilization, and storage (CCUS), as well as energy storage systems to develop multifunctional hybrid systems integrating fuel, carbon sequestration, catalysis, and energy storage.
- Enhancing Policy and Industrial Adoption: Creating policy and industrial incentives to integrate biochar into key energy and metallurgical supply chains could reinforce its role as a crucial low-carbon resource. This would help foster broader adoption and contribute to sustainable development goals.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hepburn, C.; Adlen, E.; Beddington, J.; Carter, E.A.; Fuss, S.; Mac Dowell, N.; Minx, J.C.; Smith, P.; Williams, C.K. The technological and economic prospects for CO2 utilization and removal. Nature 2019, 575, 87–97. [Google Scholar] [CrossRef]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal: A review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). World Energy Outlook 2023; IEA Publications: Paris, France, 2023. [Google Scholar]
- Corma, A.; Iborra, S.; Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 2007, 107, 2411–2502. [Google Scholar] [CrossRef]
- Guo, S.F.; Zhang, Y.Z.; Liu, L. Sorption enhanced steam reforming of biomass-based feedstocks: Towards sustainable hydrogen evolution. Chem. Eng. J. 2024, 485, 149760. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Liang, Y.Y.; Li, S.Y.; Yuan, Y.; Zhang, D.H.; Wu, Y.J.; Xie, H.; Brindhadevi, K.; Pugazhendhi, A.; Xia, C.L. A review of biomass pyrolysis gas: Forming mechanisms, influencing parameters, and product application upgrades. Fuel 2023, 347, 128461. [Google Scholar] [CrossRef]
- Shen, Y.F.; Wang, J.F.; Ge, X.L.; Chen, M.D. By-products recycling for syngas cleanup in biomass pyrolysis—An overview. Renew. Sustain. Energy Rev. 2016, 59, 1246–1268. [Google Scholar] [CrossRef]
- Abioye, K.J.; Rajamanickam, R.; Ogunjinmi, T.; Paul, S.; Selvasembian, R.; Ighalo, J.O. Advancements in biomass waste conversion to sustainable biofuels via gasification. Chem. Eng. J. 2025, 505, 159151. [Google Scholar] [CrossRef]
- Niu, Y.H.; Chi, Z.Y.; Li, M.; Du, J.Z.; Han, F.T. Advancements in biomass gasification and catalytic tar-cracking technologies. Mater. Rep. Energy 2024, 4, 100295. [Google Scholar] [CrossRef]
- Bapat, H.; Manahan, S.E.; Larsen, D.W. An activated carbon product prepared from milo (Sorghum vulgare) grain for use in hazardous waste gasification by ChemChar concurrent flow gasification. Chemosphere 1999, 39, 23–32. [Google Scholar] [CrossRef]
- International Biochar Initiative (IBI). Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil (Aka IBI Biochar Standards), Version 2.0; Technical Report; International Biochar Initiative: Westerville, OH, USA, 2014. [Google Scholar]
- Mishra, R.K.; Mohanty, K. A review of the next-generation biochar production from waste biomass for material applications. Sci. Total Environ. 2023, 904, 167171. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef]
- Mohan, D.; Sarswat, A.; Ok, Y.S.; Pittman, C.U. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—A critical review. Bioresour. Technol. 2014, 160, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, S. Preparation, modification and environmental application of biochar: A review. J. Clean. Prod. 2019, 227, 1002–1022. [Google Scholar] [CrossRef]
- Chi, N.T.L.; Anto, S.; Ahamed, T.S.; Kumar, S.S.; Shanmugam, S.; Samuel, M.S.; Mathimani, T.; Brindhadevi, K.; Pugazhendhi, A. A review on biochar production techniques and biochar based catalyst for biofuel production from algae. Fuel 2021, 287, 119411. [Google Scholar] [CrossRef]
- Maddalwar, S.; Nayak, K.K.; Kumar, M.; Singh, L. Plant microbial fuel cell: Opportunities, challenges, and prospects. Bioresour. Technol. 2021, 341, 125772. [Google Scholar] [CrossRef]
- Ibitoye, S.E.; Mahamood, R.M.; Jen, T.-C.; Loha, C.; Akinlabi, E.T. An overview of biomass solid fuels: Biomass sources, processing methods, and morphological and microstructural properties. J. Bioresour. Bioprod. 2023, 8, 333–360. [Google Scholar] [CrossRef]
- Chen, H.R.; Xu, H.; Zhu, H.N.; Yan, S.S.; Zhang, S.; Zhang, H.; Guo, X.; Hu, X.; Gao, W.R. A review on bioslurry fuels derived from bio-oil and biochar: Preparation, fuel properties and application. Fuel 2024, 355, 129283. [Google Scholar] [CrossRef]
- Adeniyi, A.G.; Iwuozor, K.O.; Emenike, E.C.; Amoloye, M.A.; Adeleke, J.A.; Omonayin, E.R.; Bamigbola, J.O.; Ojo, H.T.; Ezzat, A.O. Leaf-based biochar: A review of thermochemical conversion techniques and properties. J. Anal. Appl. Pyrolysis 2024, 177, 106352. [Google Scholar] [CrossRef]
- Setyawan, H.Y.; Sunyoto, N.M.S.; Choirun, A.; Musyaroh, M.; Arwani, M. The potential of biochar-slurry fuel from agricultural wastes in Indonesia. Cogent Eng. 2024, 11, 2307201. [Google Scholar] [CrossRef]
- Rasaq, W.A.; Okpala, C.O.R.; Igwegbe, C.A.; Białowiec, A. Catalyst-enhancing hydrothermal carbonization of biomass for hydrochar and liquid fuel production—A review. Materials 2024, 17, 2579. [Google Scholar] [CrossRef]
- Wu, P.; Fu, Y.; Vancov, T.; Wang, H.; Wang, Y.; Chen, W. Analyzing the trends and hotspots of biochar’s applications in agriculture, environment, and energy: A bibliometrics study for 2022 and 2023. Biochar 2024, 6, 78. [Google Scholar] [CrossRef]
- Li, F.; Wang, N.; He, X.; Deng, M.; Yuan, X.; Zhang, H.; Nzihou, A.; Tsang, D.C.W.; Wang, C.-H.; Ok, Y.S. Biochar-based catalytic upgrading of plastic waste into liquid fuels towards sustainability. Commun. Earth Environ. 2025, 6, 329. [Google Scholar] [CrossRef]
- Liu, Z.; Quek, A.; Hoekman, S.K.; Balasubramanian, R. Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel 2013, 103, 943–949. [Google Scholar] [CrossRef]
- Mumme, J.; Eckervogt, L.; Pielert, J.; Diakité, M.; Rupp, F.; Kern, J. Hydrothermal carbonization of anaerobically digested maize silage. Bioresour. Technol. 2011, 102, 9255–9260. [Google Scholar] [CrossRef]
- Jamal-Uddin, A.-T.; Salaudeen, S.A.; Dutta, A.; Zytner, R.G. Hydrothermal conversion of waste biomass from greenhouses into hydrochar for energy, soil amendment, and wastewater treatment applications. Energies 2022, 15, 3663. [Google Scholar] [CrossRef]
- Laird, D.A.; Brown, R.C.; Amonette, J.E.; Lehmann, J. Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels Bioprod. Biorefin. 2009, 3, 547–562. [Google Scholar] [CrossRef]
- Jahirul, M.I.; Rasul, M.G.; Chowdhury, A.A.; Ashwath, N. Biofuels production through biomass pyrolysis—A technological review. Energies 2012, 5, 4952–5001. [Google Scholar] [CrossRef]
- Lohri, C.R.; Rajabu, H.M.; Sweeney, D.J.; Zurbrügg, C. Char fuel production in developing countries—A review of urban biowaste carbonization. Renew. Sustain. Energy Rev. 2016, 59, 1514–1530. [Google Scholar] [CrossRef]
- Hasanbeigi, A.; Price, L.; Lin, E. Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review. Renew. Sustain. Energy Rev. 2012, 16, 6220–6238. [Google Scholar] [CrossRef]
- Xu, X.Y.; Zhao, Y.H.; Sima, J.; Zhao, L.; Mašek, O.; Cao, X. Indispensable role of biochar-inherent mineral constituents in its environmental applications: A review. Bioresour. Technol. 2017, 101, 887–899. [Google Scholar] [CrossRef]
- Zhang, W.M.; Xiu, L.Q.; Wu, D.; Sun, Y.-Y.; Gu, W.-Q.; Zhang, H.-G.; Meng, J.; Chen, W.-F. Review of biochar structure and physicochemical properties. Acta Agron. Sin. 2021, 47, 1–18. [Google Scholar] [CrossRef]
- He, Z.; Sheng, R.; Gao, L.; Liu, J.H. Research progress on utilizing biomass energy to achieve low-carbon ironmaking. Iron Steel 2025, 60, 1–14. [Google Scholar]
- Kujawska, J.; Bilicz, E.; Mendyk, E. Analysis of the energy parameters of selected biomass and biochar types and the environmental impact of their ashes. Civ. Environ. Eng. 2022, 32, 147–166. [Google Scholar] [CrossRef]
- Lim, X.Y.; Yek, P.N.Y.; Liew, R.K.; Chiong, M.C.; Wan Mahari, W.A.; Peng, W.; Chong, C.T.; Lin, C.Y.; Aghbashlo, M.; Tabatabaei, M.; et al. Engineered biochar produced through microwave pyrolysis as a fuel additive in biodiesel combustion. Fuel 2022, 312, 122839. [Google Scholar] [CrossRef]
- Cantrell, K.B.; Hunt, P.G.; Uchimiya, M.; Novak, J.M.; Ro, K.S. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol. 2012, 107, 419–428. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Bio/Technol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Kim, S.S.; Agblevor, F.A. Thermogravimetric analysis and fast pyrolysis of milkweed. Bioresour. Technol. 2014, 169, 367. [Google Scholar] [CrossRef]
- He, X.Y.; Liu, Z.X.; Niu, W.J.; Yang, L.; Zhou, T.; Qin, D.; Niu, Z.Y.; Yuan, Q.X. Effects of pyrolysis temperature on the physicochemical properties of gas and biochar obtained from pyrolysis of crop residues. Energy 2018, 143, 746–756. [Google Scholar] [CrossRef]
- Demirbas, A. Effect of temperature on pyrolysis products from four nut shells. J. Anal. Appl. Pyrolysis 2006, 76, 285–289. [Google Scholar] [CrossRef]
- Khalid, A.; Khushnood, R.A.; Memon, S.A. Pyrolysis as an alternate to open burning of crop residue and scrap tires: Greenhouse emissions assessment and mechanical performance investigation in concrete. J. Clean. Prod. 2022, 365, 132688. [Google Scholar] [CrossRef]
- Li, S.S.; Diao, R.; Liu, X.H.; Qi, F.L.; Yang, S.Q.; Ma, P.Y. Valorization of bio-oil distillation residue through co-pyrolysis with moso bamboo to prepare biochar: Optimization study on effects of blend ratio, pyrolysis temperature, and residence time. J. Anal. Appl. Pyrolysis 2024, 177, 106356. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Xiao, R.; Wang, D.H.; He, G.Y.; Shao, S.S.; Zhang, J.B.; Zhong, Z.P. Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres. Bioresour. Technol. 2011, 102, 4258–4264. [Google Scholar] [CrossRef] [PubMed]
- Guizani, C.; Sanz, F.J.E.; Salvador, S. Effects of CO2 on biomass fast pyrolysis: Reaction rate, gas yields and char reactive properties. Fuel 2014, 116, 310–320. [Google Scholar] [CrossRef]
- Borrego, A.G.; Garavaglia, L.; Kalkreuth, W.D. Characteristics of high heating rate biomass chars prepared under N2 and CO2 atmospheres. Int. J. Coal Geol. 2009, 77, 409–415. [Google Scholar] [CrossRef]
- Boumaaza, M.; Belaadi, A.; Alshahrani, H.; Khan, M.K.A.; Jawaid, M. Environmentally mortar development using Washingtonia/biochar waste hybrid: Mechanical and thermal properties. Biomass Convers. Biorefin. 2024, 14, 30125–30148. [Google Scholar] [CrossRef]
- Vergara, L.A.; Perez, J.F.; Colorado, H.A. 3D printing of ordinary Portland cement with waste wood derived biochar obtained from gasification. Case Stud. Constr. Mater. 2023, 18, e02117. [Google Scholar] [CrossRef]
- Wyrzykowski, M.; Toropovs, N.; Winnefeld, F.; Lura, P. Cold-bonded biochar-rich lightweight aggregates for net-zero concrete. J. Clean. Prod. 2024, 434, 140008. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Tsang, D.C.W.; Guo, B.; Yang, J.; Shen, Z.; Hou, D.; Ok, Y.S.; Poon, C.S. Biochar as green additives in cement-based composites with carbon dioxide curing. J. Clean. Prod. 2020, 258, 120678. [Google Scholar] [CrossRef]
- Zhang, C.; Fang, J.; Zhang, Y. Assessment of the grindability and component variation of torrefied agricultural wastes for industrial furnace application. J. Clean. Prod. 2024, 452, 142206. [Google Scholar] [CrossRef]
- Weber, K.; Quicker, P. Properties of biochar. Fuel 2018, 217, 240–261. [Google Scholar] [CrossRef]
- Sunarno, S.; Rabbany, F.F.; Darmawan, D.B.; Padil; Irianty, R.S.; Fermi, M.I.; Utama, P.S.; Helwani, Z. Upgrading of biochar through co-torrefaction of acid-pretreated oil palm empty fruit bunch and used cooking oil. Int. J. Renew. Energy Res. 2025, 15, 434–440. [Google Scholar]
- Kambo, H.S.; Dutta, A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew. Sustain. Energy Rev. 2015, 45, 359–378. [Google Scholar] [CrossRef]
- Tripathi, M.; Sahu, J.N.; Ganesan, P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew. Sustain. Energy Rev. 2016, 55, 467–481. [Google Scholar] [CrossRef]
- González-Arias, J.; Gómez, X.; González-Castaño, M.; Sánchez, M.E.; Rosas, J.G.; Cara-Jiménez, J. Insights into the product quality and energy requirements for solid biofuel production: A comparison of hydrothermal carbonization, pyrolysis and torrefaction of olive tree pruning. Energy 2022, 238, 122022. [Google Scholar] [CrossRef]
- Meng, K.; Wei, R.; Xu, C. Application status and prospect of biomass in steel metallurgy. J. Anhui Univ. Technol. (Nat. Sci.) 2023, 40, 250–260. [Google Scholar]
- Islam, M.T.; Klinger, J.L.; Reza, M.T. Evaluating combustion characteristics and combustion kinetics of corn stover-derived hydrochars by cone calorimeter. Chem. Eng. J. 2023, 452 Pt 2, 139419. [Google Scholar] [CrossRef]
- Chen, R.J.; Sheng, Q.; Dai, X.H.; Dong, B. Upgrading of sewage sludge by low temperature pyrolysis: Biochar fuel properties and combustion behavior. Fuel 2021, 300, 121007. [Google Scholar] [CrossRef]
- Liu, T.Y.; Wen, C.; Li, C.K.; Yan, K.; Li, R.; Jing, Z.Q.; Zhang, B.H.; Ma, J.J. Integrated water washing and carbonization pretreatment of typical herbaceous and woody biomass: Fuel properties, combustion behaviors, and techno-economic assessments. Renew. Energy 2022, 200, 218–233. [Google Scholar] [CrossRef]
- Sztancs, G.; Kovacs, A.; Toth, A.J.; Mizsey, P.; Billen, P.; Fozer, D. Catalytic hydrothermal carbonization of microalgae biomass for low-carbon emission power generation: The environmental impacts of hydrochar co-firing. Fuel 2021, 300, 120927. [Google Scholar] [CrossRef]
- Tang, C.W.; Pan, W.G.; Zhang, J.K.; Wang, W.H.; Sun, X.L. A comprehensive review on efficient utilization methods of High-alkali coals combustion in boilers. Fuel 2022, 316, 123269. [Google Scholar] [CrossRef]
- Sun, P.X.; Wang, C.L.; Zhang, M.; Cui, L.; Dong, Y. Ash problems and prevention measures in power plants burning high alkali fuel: Brief review and future perspectives. Sci. Total Environ. 2023, 901, 165985. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.J.; Fan, J.Y.; Yang, P.; Cheng, W.; Zeng, K.; Zhang, W.N.; Yang, H.P.; Shao, J.G.; Wang, X.H.; Chen, H.P. P-based additive for reducing fine particulate matter emissions during agricultural biomass combustion. Energy Fuels 2019, 33, 11274–11284. [Google Scholar] [CrossRef]
- Mutamima, A.; Sunarno, S.; Purnama, I.; Nurfatihayati, N.; Novendri, A.; Anesta, R.; Irianty, R.S. High-efficiency biochar production from oil palm fronds using acidic pretreatment and co-torrefaction with waste cooking oil. Waste Dispos. Sustain. Energy 2025, 7, 229–242. [Google Scholar] [CrossRef]
- Nebyvaev, A.; Klimov, D.; Ryzhenkov, A. Preliminary results of innovative two-stage torrefaction technology applied for thermochemical treatment of sunflower husk. Processes 2023, 11, 2486. [Google Scholar] [CrossRef]
- Jia, W.; Guo, Y.; Guo, F. Co-combustion of carbon-rich fraction from coal gasification fine slag and biochar: Gas emission, ash sintering, heavy metals evolutions and environmental risk evaluation. Chem. Eng. J. 2023, 471, 144312. [Google Scholar] [CrossRef]
- Jeong, Y.; Kim, J.S.; Lee, Y.E.; Shin, D.C.; Ahn, K.H.; Jung, J.; Kim, K.H.; Ku, M.J.; Kim, S.M.; Jeon, C.H.; et al. Investigation and optimization of co-combustion efficiency of food waste biochar and coal. Sustainability 2023, 15, 14596. [Google Scholar] [CrossRef]
- Huang, H.; Liu, J.; Evrendilek, F.; Zhang, G.; Sun, S.Y.; He, Y. Bottom slag-to-flue gas controls on S and Cl from co-combustion of textile dyeing sludge and waste biochar: Their interactions with temperature, atmosphere, and blend ratio. J. Hazard. Mater. 2022, 435, 129007. [Google Scholar] [CrossRef]
- Aguado, R.; Vera, D.; López-García, D.A.; Torreglosa, J.P.; Jurado, F. Techno-economic assessment of a gasification plant for distributed cogeneration in the agrifood sector. Appl. Sci. 2021, 11, 660. [Google Scholar] [CrossRef]
- Fernández-Lobato, L.; Aguado, R.; Jurado, F.; Vera, D. Biomass gasification as a key technology to reduce the environmental impact of virgin olive oil production: A life cycle assessment approach. Biomass Bioenergy 2022, 165, 106585. [Google Scholar] [CrossRef]
- Pedrazzi, S.; Santunione, G.; Mustone, M.; Cannazza, G.; Citti, C.; Francia, E.; Allesina, G. Techno-economic study of a small scale gasifier applied to an indoor hemp farm: From energy savings to biochar effects on productivity. Energy Convers. Manag. 2021, 228, 113645. [Google Scholar] [CrossRef]
- Wang, C.; Du, M.; Feng, H.; Jin, H. Experimental investigation on biomass gasification mechanism in supercritical water for poly-generation of hydrogen-rich gas and biochar. Fuel 2022, 319, 123809. [Google Scholar] [CrossRef]
- Freitas, F.F.; Furtado, A.C.; Piñas, J.A.V.; Venturini, O.J.; Barros, R.M.; Lora, E.E.S. Holistic life cycle assessment of a biogas-based electricity generation plant in a pig farm considering co-digestion and an additive. Energy 2022, 261 Pt B, 125340. [Google Scholar] [CrossRef]
- Saad, A.G.; El-Hakam, S.A.; Ahmed, A.I.; Ibrahim, A.A.; Gebreil, A. Highly salt resistant composite based protonated g-C3N4@rGO/biochar for photocatalytic degradation of organic dyes through simultaneous solar steam-electricity generation. J. Water Process Eng. 2024, 58, 104840. [Google Scholar] [CrossRef]
- Attah-Kyei, D.; Sukhomlinov, D.; Klemettinen, L.; Michallik, R.; O’Brien, H.; Taskinen, P.; Lindberg, D. Pyrometallurgical reduction of copper slag with biochar for metal recovery. J. Sustain. Metall. 2024, 10, 1170–1187. [Google Scholar] [CrossRef]
- Ardados, A.; Merchán, M.; Obregón, A.; Artola, A.; Iparraguirre, J.A.; García de Cortázar, M.; Eguizabal, D.; Demey, H. Development of a sustainable metallurgical process to valorize copper smelting wastes with olive stones-based biochar. Metals 2022, 12, 1756. [Google Scholar] [CrossRef]
- Ge, H.; Xie, F.; Wu, S.; Wang, W.; Chen, P.; Wang, Z.Q. Preparation of reduced iron powder by reduction roasting of jarosite residue using straw-type biochar reductant. Biomass Bioenergy 2025, 193, 107539. [Google Scholar] [CrossRef]
- Mei, Z.; Gao, F.; Liu, S.; Chen, J.B.; Tian, S.; Hu, C.X. Fast pyrolysis-driven recycling of spent LiCoO2 batteries: Synergistic reduction effects of biochar and pyrolysis gas. J. Environ. Chem. Eng. 2025, 13, 116754. [Google Scholar] [CrossRef]
- Chuanchai, A.; Wu, K.T.; Chen, I.G.; Liu, S.H. Iron ore reduction using agricultural waste biochar with different carbon to oxygen ratios. J. Taiwan Inst. Chem. Eng. 2024, 162, 105573. [Google Scholar] [CrossRef]
- Xu, C.; Wei, K.; Du, Z.; Ma, W.H. Effect of particle size on the properties of biomass gasification residue pellets used as a metallurgical-grade silicon reducing agent. Powder Technol. 2024, 435, 119406. [Google Scholar] [CrossRef]
- Dornig, C.; Hanke, G.; Antrekowitsch, J. Utilization of charcoal obtained from woody biomass in metallurgical processes based on solid–gas reactions. Metals 2024, 14, 592. [Google Scholar] [CrossRef]
- Ye, L.; Peng, Z.W.; Tian, R.; Tang, H.M.; Anzulevich, A.; Rao, M.J.; Li, G.H. Efficient pre-reduction of chromite ore with biochar under microwave irradiation. Sustain. Mater. Technol. 2023, 37, e00644. [Google Scholar]
- Tan, R.J.; Yang, J.; Liu, D.C.; Ma, B.Z.; Cui, Z.F.; Xia, L.X.; Shi, H.Y.; Yang, H.W.; Yang, B.; Kong, X.F.; et al. The mechanism study and low-carbon analysis of biomass pyrolysis enhanced antimony oxide reduction. Sep. Purif. Technol. 2025, 355 Pt A, 129515. [Google Scholar] [CrossRef]
- Gan, M.; Li, J.H.; Ji, Z.Y.; Fan, X.H.; Yu, D.; Liu, L.C.; Sun, Z.Q. Preparation of high-quality biomass char and gas as fuels for ferrous metallurgy by integrated water leaching and pyrolysis: A case study using maize straw. Biomass Bioenergy 2024, 184, 107200. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Sun, W.Q. Biochar as a sustainable alternative to pulverized coal: Comprehensive analysis of physicochemical properties, combustion performance, and environmental impact. Energy Technol. 2024, 12, 2401048. [Google Scholar] [CrossRef]
- Meng, F.; Rong, G.Q.; Zhao, R.J.; Chen, B.; Xu, X.Y.; Qiu, H.; Cao, X.D.; Zhao, L. Incorporating biochar into fuels system of iron and steel industry: Carbon emission reduction potential and economic analysis. Appl. Energy 2024, 356, 122377. [Google Scholar] [CrossRef]
- Mohammed, M.A.A.; Salmiaton, A.; Wan Azlina, W.A.K.G.; Mohammad Amran, M.S.; Fakhru’l-Razi, A.; Taufiq-Yap, Y.H. Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia. Renew. Sustain. Energy Rev. 2011, 15, 1258–1270. [Google Scholar] [CrossRef]
- Ahmed, M.; Zhou, J.; Ngo, H.; Guo, W. Insight into biochar properties and its cost analysis. Biomass Bioenergy 2016, 84, 76–86. [Google Scholar] [CrossRef]
- Wang, G.J.; Luo, Y.H.; Deng, J.; Zhang, Y.L.; Kuang, J.H. Experimental study on low-temperature pyrolysis pretreatment of biomass. Chin. Sci. Bull. 2010, 55, 3451–3457. [Google Scholar]
- Solar, J.; Hippe, F.; Babich, A.; Senk, D. Conversion of injected forestry waste biomass charcoal in a blast furnace: Influence of pyrolysis temperature. Energy Fuels 2021, 35, 529–538. [Google Scholar] [CrossRef]
- Dang, H.; Xu, R.S.; Zhang, J.L.; Wang, M.Y.; Li, J.H. Cross-upgrading of biomass hydrothermal carbonization and pyrolysis for high quality blast furnace injection fuel production: Physicochemical characteristics and gasification kinetics analysis. Int. J. Miner. Metall. Mater. 2024, 31, 268–281. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, E.L. Numerical investigation of the influence of particle shape, pretreatment temperature, and coal blending on biochar combustion in a blast furnace. Fuel 2022, 313, 123016. [Google Scholar] [CrossRef]
- Liu, Y.R.; Shen, Y.S. Modelling and optimisation of biomass injection in ironmaking blast furnaces. Prog. Energy Combust. Sci. 2021, 87, 100952. [Google Scholar] [CrossRef]
- Wang, G.W.; Ren, S.; Zhang, J.L.; Ning, X.J.; Liang, W.; Zhang, N.; Wang, C. Influence mechanism of alkali metals on CO2 gasification properties of metallurgical coke. Chem. Eng. J. 2020, 387, 124093. [Google Scholar] [CrossRef]
- Dastidar, M.G.; Bhattacharyya, A.; Sarkar, B.K.; Dey, R.; Mitra, M.K.; Schenk, J. The effect of alkali on the reaction kinetics and strength of blast furnace coke. Fuel 2020, 268, 117388. [Google Scholar] [CrossRef]
- Lee, Y.E.; Jeong, Y.A.; Shin, D.C.; Yoo, Y.S.; Ahn, K.H.; Jung, J.H.; Kim, I.T. Effects of demineralization on food waste biochar for co-firing: Behaviors of alkali and alkaline earth metals and chlorine. Waste Manag. 2022, 137, 190–199. [Google Scholar] [CrossRef]
- Jeong, Y.A.; Lee, Y.E.; Shin, D.C.; Ahn, K.H.; Jung, J.H.; Kim, I.T. Demineralization of food waste biochar for effective alleviation of alkali and alkali earth metal species. Processes 2021, 9, 47. [Google Scholar] [CrossRef]
- Liu, T.L.; Gao, X.P.; Zehi Mofrad, A.; Kudo, S.; Asano, S.; Hayashi, J. Leaching char with acidic aqueous phase from biomass pyrolysis: Removal of alkali and alkaline-earth metallic species and uptakes of water-soluble organics. Energy Fuels 2021, 35, 12237–12251. [Google Scholar] [CrossRef]
- Nizamuddin, S.; Baloch, H.A.; Griffin, G.J.; Mubarak, N.M.; Bhutto, A.W.; Abro, R.; Mazari, S.A.; Ali, B.S. An overview of effect of process parameters on hydrothermal carbonization of biomass. Renew. Sustain. Energy Rev. 2017, 73, 1289–1299. [Google Scholar] [CrossRef]
- Yang, M.R.; Peng, Q.; Cao, G.M.; Tao, X.Y.; Chang, Y.L.; Jiang, X. Feasibility analysis and environmental impact evaluation of biochar derived from mango pit for blast furnace injection. Chem. Eng. J. 2024, 487, 150451. [Google Scholar] [CrossRef]
- Yunos, N.F.M.; Zaharia, M.; Idris, M.A.; Daud, W.R.W.; Abnisa, F.; Sahajwalla, V. Recycling agricultural waste from palm shells during electric arc furnace steelmaking. Energy Fuels 2012, 26, 278–286. [Google Scholar] [CrossRef]
- Han, C.J.; Wei, G.S.; Wang, Q.S.; Zhu, R. Performance evaluation of EAF dust-loaded rice straw biochar as the EAF foaming agent: Study on physicochemical properties and reduction behavior with slag. Fuel 2025, 400, 135710. [Google Scholar] [CrossRef]
- Safarian, S. To what extent could biochar replace coal and coke in steel industries? Fuel 2023, 339, 127401. [Google Scholar] [CrossRef]
- Kan, T.; Strezov, V.; Evans, T.J. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renew. Sustain. Energy Rev. 2016, 57, 1126–1140. [Google Scholar] [CrossRef]
- Adetoyese, O.O.; Ka, L.L.; Chi, W.H. Charcoal production via multistage pyrolysis. Chin. J. Chem. Eng. 2012, 20, 455–460. [Google Scholar] [CrossRef]
- Elyounssi, K.; Blin, J.; Halim, M. High-yield charcoal production by two-step pyrolysis. J. Anal. Appl. Pyrolysis 2010, 87, 138–143. [Google Scholar] [CrossRef]
- Cardarelli, A.; De Santis, M.; Cirilli, F.; Barbanera, M. Computational fluid dynamics analysis of biochar combustion in a simulated ironmaking electric arc furnace. Fuel 2022, 328, 125267. [Google Scholar] [CrossRef]
- Wei, R.F.; Zheng, X.T.; Zhu, Y.L.; Feng, S.H.; Long, H.M.; Xu, C.C. Hydrothermal bio-char as a foaming agent for electric arc furnace steelmaking: Performance and mechanism. Appl. Energy 2024, 353 Pt A, 122084. [Google Scholar] [CrossRef]
- Zhang, T.S.; Wang, L.L.; Zhu, W.; Guo, Y.Q.; Chen, Z.; Li, J.X.; Wei, J.X.; Yu, Q.J. Preparation of high strength carbon negative building material by CO2 curing biochar-EAF steel slag compacts. Constr. Build. Mater. 2024, 441, 137456. [Google Scholar] [CrossRef]
- Han, C.J.; Wei, G.S.; Wang, Q.S.; Zhu, R.; Liu, F.H. Study on the pyrolysis kinetics of rice husk catalyzed by zinc-containing oxides in electric arc furnace dust. Biomass Bioenergy 2025, 194, 107628. [Google Scholar] [CrossRef]
- Zbair, M.; Drané, M.; Limousy, L. NO2 adsorption on biochar derived from wood shaving litter: Understanding surface chemistry and adsorption mechanisms. Clean Technol. 2024, 6, 973–993. [Google Scholar] [CrossRef]
- Yan, C.; Peng, D.; Chen, X.; Zhang, Y.M.; Liu, H.K.; Xu, H. Recovery of phosphate and removal of Cr(VI) from water by calcium-modified panda manure biochar: Synergistic effect of adsorption and reduction. J. Taiwan Inst. Chem. Eng. 2025, 170, 106015. [Google Scholar] [CrossRef]
- Liu, J.; Xia, Y.; Sun, H.; Hu, B.; Wu, Y.; Li, J.; Lu, Q. Theoretical insight into NO formation and reduction at biochar N-sites: Influence of different oxygen-containing functional groups. J. Environ. Chem. Eng. 2024, 12, 113147. [Google Scholar] [CrossRef]
- Huang, Y.; Hu, T.; Li, S.; Zhou, W. Ferrihydrite/B, N co-doped biochar composites enhancing tetracycline degradation: The crucial role of boron incorporation in Fe(III) reduction and oxygen activation. J. Environ. Sci. 2025, 154, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Li, X.; Chu, X.; Zuo, S.; Gao, B.; Yao, C.; Li, Z.; Chen, Y. Boosting photocatalytic reduction of nitrate to ammonia enabled by perovskite/biochar nanocomposites with oxygen defects and O-containing functional groups. Chemosphere 2022, 294, 133763. [Google Scholar] [CrossRef]
- Yuan, D.; Wang, G.; Hu, C.; Zhou, S.; Clough, T.J.; Wrage-Mönnig, N.; Luo, J.; Qin, S. Electron shuttle potential of biochar promotes dissimilatory nitrate reduction to ammonium in paddy soil. Soil Biol. Biochem. 2022, 172, 108760. [Google Scholar] [CrossRef]
- Han, E.-Y.; Kim, B.-K.; Kim, H.-B.; Kim, J.-G.; Lee, J.-Y.; Baek, K. Reduction of nitrate using biochar synthesized by co-pyrolyzing sawdust and iron oxide. Environ. Pollut. 2021, 290, 118028. [Google Scholar] [CrossRef]
- Shi, Y.; Zhao, T.; Du, J.; Feng, B.; Tang, Q.; Shan, S.; Zhang, M.; Wang, Q.; Zhao, J. Low temperature NH3 selective catalytic reduction of NOx over CeOx-biochar catalyst prepared by air oxidation. J. Energy Inst. 2024, 112, 101484. [Google Scholar] [CrossRef]
- Liu, S.; Feng, X.; Liu, Z.; Zhao, W.; Li, Y.; Zhang, J. Nitrogen doping in porous biochar from cotton stalk with H3PO4 activation for reduction of NOx with NH3-SCR at low temperatures: Characteristics and catalytic activity analysis. Fuel 2023, 332 Pt 2, 126256. [Google Scholar] [CrossRef]
- Raja, S.; Eshwar, D.; Natarajan, S.; Madraswala, A.; Bharath Babu, C.M.; Alphin, M.S.; Manigandan, S. Biochar supported manganese based catalyst for low-temperature selective catalytic reduction of nitric oxide. Clean Technol. Environ. Policy 2023, 25, 1109–1118. [Google Scholar] [CrossRef]
- Cho, D.-W.; Kwon, G.; Ok, Y.S.; Kwon, E.E.; Song, H. Reduction of bromate by cobalt-impregnated biochar fabricated via pyrolysis of lignin using CO2 as a reaction medium. ACS Appl. Mater. Interfaces 2017, 9, 13142–13150. [Google Scholar] [CrossRef]
- Chen, M.; Dong, C.; Chen, H.; Li, Y.; Cai, M.; Chen, Y.; Jin, M. Enhanced electron transport and selective reduction of nitrate to nitrogen by sludge biochar-supported nanoscale zero-valent iron. Colloid Interface Sci. Commun. 2025, 67, 100838. [Google Scholar] [CrossRef]
- Gholamrezaei, F.; Ebrahimipour, S.Y.; Ghonchepour, E. Synthesis and evaluation of palladium-functionalized biochar-supported magnetic nanoparticles for efficient nitro reduction. J. Organomet. Chem. 2024, 1019, 123314. [Google Scholar] [CrossRef]
- Gong, H.; Wei, L.; Li, Q.; Zhang, J.; Wang, F.; Ren, J.; Ma, Y.; Shi, X.-L. N, P co-doped coffee biochar-supported Ni-Nx for chemoselective reduction or reductive amination of nitroarenes using formic acid. Appl. Catal. A Gen. 2024, 680, 119758. [Google Scholar] [CrossRef]
- Xu, X.; Liu, Z.; Guo, Z.; Li, Y.; Zhao, Y.; Lu, J.; Zhang, J.; Hu, Z. Efficient removal of norfloxacin in water by sulfidated nanoscale zerovalent iron loaded nitrogen-doped biochar: Dual realization of efficient enrichment and reduction. Chem. Eng. J. 2024, 493, 152619. [Google Scholar] [CrossRef]
- Hu, K.; Jia, S.; Shen, B.; Wang, Z.; Dong, Z.; Lyu, H. Nickel phthalocyanine anchored onto N-doped biochar for efficient electrocatalytic carbon dioxide reduction. Chem. Eng. J. 2024, 497, 154686. [Google Scholar] [CrossRef]
- Bashir, A.; Pandith, A.H.; Quraeshi, A.; Malik, L.A.; Gani, M.; Perez, J.M. Catalytic propensity of biochar decorated with core-shell nZVI@Fe3O4: A sustainable photo-Fenton catalysis of methylene blue dye and reduction of 4-nitrophenol. J. Environ. Chem. Eng. 2022, 10, 107401. [Google Scholar] [CrossRef]
- Jacob, J.A.E.; Antony, R.; Jebakumar, D.S.I. Synergistic effect of silver nanoparticle-embedded calcite-rich biochar derived from Tamarindus indica bark on 4-nitrophenol reduction. Chemosphere 2024, 349, 140765. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, L.A.; Dennehy, M.; Alvarez, M. Metal oxide-biochar supported recyclable catalysts: A feasible solution for the reduction of 4-nitrophenol in water. Catal. Commun. 2023, 181, 106723. [Google Scholar] [CrossRef]
- Yang, X.; Qi, M.; He, Z.; Li, Q.; Wu, L.; Lv, F.; Zhou, B.; Wang, Z.; Huang, Z.-H.; Wang, M.-X. Highly active nitrogen-doped biochar for catalytic reduction of 4-nitrophenol: Kinetic, thermodynamic and mechanism investigation. Appl. Surf. Sci. 2024, 678, 161113. [Google Scholar] [CrossRef]
- Behera, M.; Tiwari, N.; Banerjee, S.; Sheik, A.R.; Kumar, M.; Pal, M.; Pal, P.; Chatterjee, R.P.; Chakrabortty, S.; Tripathy, S.K. Ag/biochar nanocomposites demonstrate remarkable catalytic activity towards reduction of p-nitrophenol via restricted agglomeration and leaching characteristics. Colloids Surf. A Physicochem. Eng. Asp. 2022, 642, 128616. [Google Scholar] [CrossRef]
- Goldstein, T.P.; Aizenshtat, Z. Thermochemical sulfate reduction: A review. J. Therm. Anal. 1994, 42, 241–290. [Google Scholar] [CrossRef]
- Wan, Q.; Wang, X.L.; Hu, W.X.; Wan, Y.; Chou, I.M. Reaction pathway, mechanism and kinetics of thermochemical sulfate reduction: Insights from in situ Raman spectroscopic observations at elevated temperatures and pressures. Geochim. Cosmochim. Acta 2024, 381, 25–42. [Google Scholar] [CrossRef]
Inferences | Literature Gaps | Source |
---|---|---|
Reviewed the preparation of biochar by thermochemical methods and its application mechanisms and reaction types as a catalyst in algae-based fuel production | Did not involve the comprehensive application of industrial raw materials and the replacement of multiple fuels | [16] |
Discussed the power generation mechanisms and improvement strategies of plant microbial fuel cells | Had low relevance to the fuel replacement field | [17] |
Summarized the sources, processing methods, and properties of solid biomass fuels | Did not involve the replacement potential of high-temperature carbon–thermal reactions | [18] |
Focused on the processes, properties, and applications of preparing slurry fuels from fast pyrolysis products | Did not involve solid fuel replacement and carbon reactivity | [19] |
Summarized the thermochemical conversion processes and product characteristics of leaf-based biomass | Lacked exploration of fuel/raw material replacement applications | [20] |
Summarized the potential of making biochar slurry fuel from Indonesian agricultural wastes | Was highly regional and did not involve cross-domain performance comparison | [21] |
Reviewed the roles and product properties of catalysts in the HTC process | Did not involve the application of dry-state high-temperature carbon–thermal reduction | [22] |
Analyzed the research hotspots of biochar applications from 2022 to 2023 | Lacked comparison of specific fuel/raw material replacement technologies | [23] |
Reviewed the technology of biochar-catalyzed plastic pyrolysis for liquid fuel production | Had limited association with traditional industrial replacement applications | [24] |
Biomass Type | Industrial Analysis (Mass Fraction)/% | Elementary Analysis (Mass Fraction)/% | Lower Heating Value (MJ·kg−1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
M | A | V | CF | C | H | N | S | O | ||
Wheat straw | 9.02 | 1.85 | 72.48 | 16.65 | 44.65 | 5.24 | 0.28 | 0.08 | 40.72 | 15.83 |
Cotton straw | 6.93 | 3.18 | 73.00 | 16.89 | 44.90 | 7.50 | 1.20 | — | 35.47 | 18.40 |
Maize stalk | 8.52 | 7.09 | 68.09 | 16.30 | 42.47 | 3.27 | 1.18 | 0.26 | 52.82 | 15.50 |
Rice husk | 6.00 | 16.92 | 51.98 | 25.10 | 35.34 | 5.43 | 1.77 | 0.09 | 35.36 | 13.38 |
Peanut shell | 8.84 | 4.69 | 68.48 | 17.99 | 43.53 | 6.54 | 2.24 | 0.12 | 34.04 | 16.28 |
Pine sawdust | 6.11 | 3.47 | 74.60 | 15.82 | 45.76 | 6.74 | 0.07 | — | 37.85 | 15.41 |
Rice straw | 4.13 | 13.56 | 77.77 | 14.54 | 38.09 | 6.15 | 0.70 | 0.06 | 37.31 | 13.67 |
Bamboo | 5.71 | 4.10 | 71.49 | 18.70 | 52.00 | 5.10 | 0.40 | — | 42.50 | 19.90 |
Birch bark | 5.88 | 4.20 | 72.72 | 17.20 | 57.00 | 6.70 | 0.50 | 0.10 | 35.70 | 25.90 |
Coconut shell | 7.51 | 1.10 | 79.89 | 11.50 | 51.10 | 5.60 | 0.10 | 0.10 | 43.10 | 16.40 |
Corncobs | 8.87 | 0.50 | 73.60 | 17.03 | 49.00 | 5.40 | 0.40 | — | 44.20 | 17.90 |
Poplar | 6.56 | 1.10 | 78.04 | 14.30 | 48.50 | 5.90 | 0.50 | 43.70 | 16.50 | |
Sugarcane bagasse | 4.21 | 5.20 | 73.09 | 17.50 | 49.80 | 6.00 | 0.20 | 0.10 | 43.90 | 19.50 |
Waste tea leaves | 5.45 | 2.40 | 80.15 | 12.00 | 48.00 | 5.50 | 0.50 | 0.10 | 44.00 | 17.60 |
Corn straw biochar | — | 18.75 | 20.36 | 60.89 | 62.05 | 1.91 | 0.69 | 0.13 | 16.47 | 23.57 |
Peanut shell biochar | — | 16.68 | 24.54 | 58.78 | 59.66 | 1.88 | 0.93 | 0.21 | 20.64 | 22.35 |
Fig biochar | — | 2.37 | 21.04 | 76.59 | 88.81 | 5.34 | 0.62 | 0.10 | 5.12 | 36.00 |
Sycamore leaf biochar | — | 18.39 | 19.98 | 56.38 | 68.76 | 1.34 | 1.16 | 1.10 | 26.74 | 22.30 |
Bituminous coal | 8.85 | 21.37 | 38.48 | 31.30 | 57.42 | 3.81 | 0.93 | 0.46 | 7.16 | 24.30 |
Anthracite coal | 8.00 | 19.02 | 7.85 | 65.13 | 65.65 | 2.64 | 0.99 | 0.51 | 3.19 | 24.42 |
Target Pollutant | Reduction Role of Biochar | Main Mechanism | Source |
---|---|---|---|
NO2 | Direct reduction | Surface phenolic hydroxyl groups react with NO2 for chemical reduction (low-temperature and pyrolysis reduction) | [112] |
Cr(VI) | Direct reduction | –OH functional groups provide electrons, reducing part of Cr(VI) to Cr(III) (with Ca2+ precipitation simultaneously) | [113] |
NO | Direct reduction regulation | Nitrogen-active sites and –OH functional groups regulate NO generation and reduction (DFT mechanism) | [114] |
TC (tetracycline) | Direct electron donor | B-doped sp2 carbon electrons accelerate Fe(III) → Fe(II) and O2 activation | [115] |
NO3− → NH4+ | Direct electron supply synergy | Phenolic hydroxyl groups on biochar surface synergistically photogenerate electrons to reduce NO3− | [116] |
NO3− → NH4+ (DNRA) | Indirect electron donor (electron shuttle) | Π-electron structure/free radical-mediated microbial DNRA electron transfer | [117] |
Fe2O3 → ZVI (preparation) | Direct pyrolysis reduction | CO and H2 released from biomass pyrolysis, together with the carbon skeleton, reduce Fe2O3 to ZVI; subsequently, ZVI reduces NO2 | [118] |
NOx(SCR) | Indirect (carrier/active sites) | CeOx-BC biochar functional groups inhibit metal–oxygen vacancy regulation | [119] |
NOx(SCR) | Indirect (carrier/electron transfer) | Nitrogen doping enhances NO adsorption and O2 activation, awakening the synergy of rice husk | [120] |
NOx(SCR) | Indirect (carrier/dispersion) | Mn/TiO2-BC carrier enhances dispersion of active components and oxygen vacancy regulation | [121] |
BrO3− | Indirect (carrier/stabilization) | Co/BC composite structure regulates Co phase transformation, promoting BrO3− reduction | [122] |
NO3−− | Indirect (loading metal active sites) | Sewage sludge biochar loads nZVI, accelerating electron transfer and inhibiting agglomeration | [123] |
Nitroaromatics | Carrier/dispersion | Pd/Fe3O4@BC, NaBH4 provides electrons | [124] |
Nitroaromatics | Carrier coordination regulation | Ni-Nx@NPC/B, formic acid provides hydrogen | [125] |
Norfloxacin | Indirect (adsorption–reduction coupling) | Nitrogen-doped biochar provides porous adsorption sites and N-containing groups | [126] |
CO2 | Electrode carrier | NiPx/N-BMRC, external power supply provides electrons | [127] |
4-NP | Carrier/electron transfer | nZVI@Fe3O4/Cu, NaBH4·H2O2 | [128] |
4-NP | Carrier/dispersion | Ag@Ca-BC, NaBH4 | [129] |
4-NP | Carrier-assisted catalysis | MoOx-BC, NaBH4 | [130] |
4-NP | Direct electron donor/active oxygen generation | NHPC-800 biochar itself coordinately regulates electron transfer and directly provides electrons for reduction | [131] |
4-NP | Indirect (adsorption –reduction coupling) | Biochar skeleton acts as a carrier for AgNPs to improve dispersion and stability of metal nanoparticles | [132] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Zhou, P.; Zhao, X. Applications of Biochar in Fuel and Feedstock Substitution: A Review. Energies 2025, 18, 4511. https://doi.org/10.3390/en18174511
Wang H, Zhou P, Zhao X. Applications of Biochar in Fuel and Feedstock Substitution: A Review. Energies. 2025; 18(17):4511. https://doi.org/10.3390/en18174511
Chicago/Turabian StyleWang, Huijuan, Ping Zhou, and Xiqiang Zhao. 2025. "Applications of Biochar in Fuel and Feedstock Substitution: A Review" Energies 18, no. 17: 4511. https://doi.org/10.3390/en18174511
APA StyleWang, H., Zhou, P., & Zhao, X. (2025). Applications of Biochar in Fuel and Feedstock Substitution: A Review. Energies, 18(17), 4511. https://doi.org/10.3390/en18174511