Performance Evaluation of Flapping-Wing Energy Harvester in Confined Duct Environments
Abstract
1. Introduction
2. Mathematical Modelling
2.1. Problem Description
2.2. Kinematics
2.3. Numerical Methodology
3. Results and Discussion
3.1. Duct Configurations Without Oscillating Wing
3.2. Energy-Harvesting Performance with Different Duct Designs Under Partial Confinement
3.3. Energy-Harvesting Performance with Different Duct Under Full Confinement
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jones, K.D.; Davids, S.; Platzer, M.F. Oscillating-Wing Power Generator. In Proceedings of the ASME/JSME Joint Fluids Engineering Conference, San Francisco, CA, USA, 18–23 July 1999. [Google Scholar]
- Jones, K.D.; Platzer, M.F. Numerical computation of flapping-wing propulsion and power extraction. In Proceedings of the 35th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 1997. [Google Scholar]
- Wu, T.Y.-T. Extraction of flow energy by a wing oscillating in waves. J. Ship Res. 1972, 16, 66–78. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, X.; Tian, X.; Li, X.; Lu, W. A review on fluid dynamics of flapping foils. Ocean Eng. 2020, 195, 106712. [Google Scholar] [CrossRef]
- Lindsey, K. A Feasibility Study of Oscillating-Wing Power Generators. Master’s Thesis, Naval Postgraduate School, Monterey, CA, USA, 2002; pp. 1–183. [Google Scholar]
- Xiao, Q.; Zhu, Q. A review on flow energy harvesters based on flapping foils. J. Fluids Struct. 2014, 46, 174–191. [Google Scholar] [CrossRef]
- Young, J.; Lai, J.C.; Platzer, M.F. A review of progress and challenges in flapping foil power generation. Prog. Aerosp. Sci. 2014, 67, 2–28. [Google Scholar] [CrossRef]
- Young, J.; Lai, J.C.S.; Platzer, M.F. Flapping foil power generation: Review and potential in pico-hydro application. In Proceedings of the 2015 International Conference on Sustainable Energy Engineering and Application (ICSEEA), Bandung, Indonesia, 5–7 October 2015; IEEE: New York, NY, USA, 2015; pp. 95–100. [Google Scholar]
- McKinney, W.; DeLaurier, J. Wingmill: An Oscillating-Wing Windmill. J. Energy 1981, 5, 109–115. [Google Scholar] [CrossRef]
- Triantafyllou, G.; Triantafyllou, M.; Grosenbaugh, M. Optimal thrust development in oscillating foils with application to fish propulsion. J. Fluids Struct. 1993, 7, 205–224. [Google Scholar] [CrossRef]
- Jones, K.D.; Lindsey, K.; Platzer, M.F. An investigation of the fluid-structure interaction in an oscillating-wing micro-hydropower generator. WIT Trans. Built Environ. 2003, 71, 72–82. [Google Scholar]
- Zhu, Q.; Peng, Z. Mode coupling and flow energy harvesting by a flapping foil. Phys. Fluids 2009, 21, 033601. [Google Scholar] [CrossRef]
- Peng, Z.; Zhu, Q. Energy harvesting through flow-induced oscillations of a foil. Phys. Fluids 2009, 21, 123602. [Google Scholar] [CrossRef]
- Dumas, G.; Kinsey, T. Eulerian simulations of oscillating airfoils in power extraction regime. WIT Trans. Eng. Sci. 2006, 52, 245–254. [Google Scholar] [CrossRef]
- Kinsey, T.; Dumas, G. Parametric study of an oscillating airfoil in a power-extraction regime. AIAA J. 2008, 46, 1318–1330. [Google Scholar] [CrossRef]
- Shimizu, E.; Isogai, K.; Obayashi, S. Multiobjective design study of a flapping wing power generator. J. Fluids Eng. 2008, 130, 021104. [Google Scholar] [CrossRef]
- Liu, Z.; Bhattacharjee, K.S.; Tian, F.-B.; Young, J.; Ray, T.; Lai, J.C. Kinematic optimization of a flapping foil power generator using a multi-fidelity evolutionary algorithm. Renew. Energy 2019, 132, 543–557. [Google Scholar] [CrossRef]
- Kim, D.; Strom, B.; Mandre, S.; Breuer, K. Energy harvesting performance and flow structure of an oscillating hydrofoil with finite span. J. Fluids Struct. 2017, 70, 314–326. [Google Scholar] [CrossRef]
- Liu, W.; Xiao, Q.; Cheng, F. A bio-inspired study on tidal energy extraction with flexible flapping wings. Bioinspiration Biomim. 2013, 8, 036011. [Google Scholar] [CrossRef] [PubMed]
- Visbal, M.R.; Gordnier, R.E.; Galbraith, M.C. High-fidelity simulations of moving and flexible airfoils at low Reynolds numbers. Exp. Fluids 2009, 46, 903–922. [Google Scholar] [CrossRef]
- Wu, J.; Shu, C.; Zhao, N.; Tian, F.-B. Numerical study on the power extraction performance of a flapping foil with a flexible tail. Phys. Fluids 2015, 27, 013602. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Han, J.; Sun, G.; Xie, Y. Effects of hydrofoil motion parameters and swing arm parameters on power extraction of a flexible hydrofoil in swing arm mode. Ocean Eng. 2022, 245, 110543. [Google Scholar] [CrossRef]
- Zhu, B.; Xia, P.; Huang, Y.; Zhang, W. Energy extraction properties of a flapping wing with an arc-deformable airfoil. J. Renew. Sustain. Energy 2019, 11, 023302. [Google Scholar] [CrossRef]
- Zhu, B.; Han, W.; Sun, X.; Wang, Y.; Cao, Y.; Wu, G.; Huang, D.; Zheng, Z.C. Research on energy extraction characteristics of an adaptive deformation oscillating-wing. J. Renew. Sustain. Energy 2015, 7, 023101. [Google Scholar] [CrossRef]
- Hoke, C.; Young, J.; Lai, J. Effects of time-varying camber deformation on flapping foil propulsion and power extraction. J. Fluids Struct. 2015, 56, 152–176. [Google Scholar] [CrossRef]
- Bai, X.-D.; Zhang, J.-S.; Zheng, J.-H.; Wang, Y. Energy extraction performance of a flapping wing with active elastic airbag deformation at the leading edge. Ocean Eng. 2021, 228, 108901. [Google Scholar] [CrossRef]
- Xu, J.; Zhu, H.; Guan, D.; Zhan, Y. Numerical analysis of leading-edge vortex effect on tidal current energy extraction performance for chord-wise deformable oscillating hydrofoil. J. Mar. Sci. Eng. 2019, 7, 398. [Google Scholar] [CrossRef]
- Xie, Y.; Jiang, W.; Lu, K.; Zhang, D. Numerical investigation into energy extraction of flapping airfoil with Gurney flaps. Energy 2016, 109, 694–702. [Google Scholar] [CrossRef]
- Tian, C.; Liu, X. Numerical study on the energy extraction characteristics of a flapping foil with movable lateral flaps. Renew. Energy 2024, 225, 120244. [Google Scholar] [CrossRef]
- Zhou, D.; Sun, X. Effects of trailing-edge flaps on the power-extraction performance of flapping airfoils. Kongqi Donglixue Xuebao/Acta Aerodyn. Sin. 2021, 39, 7–18. [Google Scholar] [CrossRef]
- Zhu, B.; Huang, Y.; Zhang, Y. Energy harvesting properties of a flapping wing with an adaptive Gurney flap. Energy 2018, 152, 119–128. [Google Scholar] [CrossRef]
- Zhou, D.; Cao, Y.; Sun, X. Numerical study on energy-extraction performance of a flapping hydrofoil with a trailing-edge flap. Ocean Eng. 2021, 224, 108756. [Google Scholar] [CrossRef]
- Alam, M.; Sohn, C.H. Enhanced performance of oscillating wing energy harvester using active controlled flap. J. Mech. Sci. Technol. 2023, 37, 2405–2415. [Google Scholar] [CrossRef]
- MahboubiDoust, A.; Ramiar, A.; Dardel, M. Numerical investigation of plasma actuated and non-actuated Gurney flaps on aerodynamic characteristics of a plunging airfoil. Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. 2016, 230, 1423–1437. [Google Scholar] [CrossRef]
- Alam, M.; Sohn, C.H. Parametric analysis of an oscillating wing energy harvester with a trailing edge flap. J. Mech. Sci. Technol. 2023, 37, 3563–3573. [Google Scholar] [CrossRef]
- Sun, G.; Wang, Y.; Xie, Y.; Ma, P.; Zhang, Y. Hydrodynamic and energy extraction properties of oscillating hydrofoils with a trailing edge flap. Appl. Ocean Res. 2021, 110, 102530. [Google Scholar] [CrossRef]
- Alam, M.; Sohn, C.H. Enhancing the Performance of an Oscillating Wing Energy Harvester Using a Leading-Edge Flap. J. Mar. Sci. Eng. 2024, 12, 62. [Google Scholar] [CrossRef]
- Lv, Z.; Zhang, G.; Sun, X. Research on energy harvesting characteristics of a flapping foil with trailing edge jet flap. Appl. Ocean Res. 2024, 146, 103951. [Google Scholar] [CrossRef]
- Zheng, M.; Yao, H.; Bai, Y.; Bo, Q.; Chi, X.; Chen, J. The power-extraction regime of a figure-eight trajectory flapping-foil turbine. Phys. Fluids 2024, 36, 025136. [Google Scholar] [CrossRef]
- Wang, B.; Zhu, B.; Zhang, W. New type of motion trajectory for increasing the power extraction efficiency of flapping wing devices. Energy 2019, 189, 116072. [Google Scholar] [CrossRef]
- Xiao, Q.; Liao, W.; Yang, S.; Peng, Y. How motion trajectory affects energy extraction performance of a biomimic energy generator with an oscillating foil? Renew. Energy 2012, 37, 61–75. [Google Scholar] [CrossRef]
- Li, W.; Wang, W.-Q.; Yan, Y.; Tian, F.-B. Effects of pitching motion profile on energy harvesting performance of a semi-active flapping foil using immersed boundary method. Ocean Eng. 2018, 163, 94–106. [Google Scholar] [CrossRef]
- Wang, G.; Ng, B.F. Energy harvesting performance of a tandem-hydrofoil based closely-interconnected tidal array. Energy Convers. Manag. 2023, 280, 116796. [Google Scholar] [CrossRef]
- Dahmani, F.; Sohn, C.H. Effects of the downstream spatial configuration on the energy extraction performance of tandem/parallel combined oscillating hydrofoils. J. Mech. Sci. Technol. 2020, 34, 2035–2046. [Google Scholar] [CrossRef]
- Kinsey, T.; Dumas, G. Optimal Operating Parameters for an Oscillating Foil Turbine at Reynolds Number 500,000. AIAA J. 2014, 52, 1885–1895. [Google Scholar] [CrossRef]
- Yang, H.; He, G.; Mo, W.; Wang, W. Energy Extraction Performance of Tandem Ground-effect Hydrofoils. IOP Conf. Ser. Earth Environ. Sci. 2021, 809, 012001. [Google Scholar] [CrossRef]
- Swain, P.K.; Dora, S.P.; Barik, A.K. Energy extraction performance of tandem flapping foil undergoing elliptical motion trajectory. Ocean Eng. 2023, 268, 113390. [Google Scholar] [CrossRef]
- He, G.; Yang, H.; Mo, W.; Zhao, Z.; Wang, W.; Ghassemi, H. Influence of inter-foil spacing on energy extraction of tandem oscillating hydrofoils. Ocean Eng. 2022, 259, 111953. [Google Scholar] [CrossRef]
- Dahmani, F.; Sohn, C. Effect of convergent duct geometry on the energy extraction performance of tandem oscillating hydrofoils system. J. Fluids Struct. 2020, 95, 102949. [Google Scholar] [CrossRef]
- Zhao, F.; Jiang, Q.; Wang, Z.; Qadri, M.N.M.; Li, L.; Tang, H. Interaction of two fully passive flapping foils arranged in tandem and its influence on flow energy harvesting. Energy 2023, 268, 126714. [Google Scholar] [CrossRef]
- Hasanvand, A.; Savaedi, M.; Hajivand, A.; Salemi, H.H. Harnessing tidal energy efficiency: A comprehensive analysis of tandem flapping hydrofoils for maximizing power generation from low-level currents. Ocean Eng. 2024, 310, 118673. [Google Scholar] [CrossRef]
- Okulov, V.; Van Kuik, G.A.M. The Betz-Joukowsky limit for the maximum power coefficient of wind turbines. Int. Sci. J. Altern. Energy Ecol. 2009, no. 9, 106–111. [Google Scholar]
- Vennell, R. Exceeding the Betz limit with tidal turbines. Renew. Energy 2013, 55, 277–285. [Google Scholar] [CrossRef]
- Gauthier, E.; Kinsey, T.; Dumas, G. Impact of blockage on the hydrodynamic performance of oscillating-foils hydrokinetic turbines. J. Fluids Eng. Trans. ASME 2016, 138, 091103. [Google Scholar] [CrossRef]
- Karakas, F.; Istanbul Technical University; Fenercioglu, I. Effect of side-walls on flapping-wing power-generation: An experimental study. J. Appl. Fluid Mech. 2016, 9, 2769–2779. [Google Scholar] [CrossRef]
- Iverson, D. Experimental Investigation of Oscillating-Foil Technologies. Master’s Thesis, University of Victoria, Victoria, BC, Canada, 2015. [Google Scholar]
- Yang, H.; He, G.; Mao, W.; Mo, W.; Ghassemi, H. Blockage effect and ground effect on oscillating hydrofoil. Ocean Eng. 2023, 286, 115680. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Q.; Li, Z.; Li, Y.; Feng, X. Partial confinement effects on the performance of a flapping foil power generator. Phys. Fluids 2023, 35, 027108. [Google Scholar] [CrossRef]
- Jiang, W.; Mei, Z.; Wu, F.; Han, A.; Xie, Y.; Xie, D. Effect of shroud on the energy extraction performance of oscillating foil. Energy 2022, 239, 122387. [Google Scholar] [CrossRef]
- Ranjbar, M.H.; Rafiei, B.; Nasrazadani, S.A.; Gharali, K.; Soltani, M.; Al-Haq, A.; Nathwani, J. Power enhancement of a vertical axis wind turbine equipped with an improved duct. Energies 2021, 14, 5780. [Google Scholar] [CrossRef]
- Alam, M.; Kim, B.; Natarajan, Y.; Preethaa, K.S.; Song, S.; Chen, Z. Predicting the performance of L-shaped confined flapping-foil energy harvester: A deep learning approach. Ocean Eng. 2024, 313, 119455. [Google Scholar] [CrossRef]
- Akhtar, S.; Siddiqa, S.; Alam, M.; Roy, P.; Lee, S.-W.; Park, C.W. Investigation of Water Turbulence Effects on Microalgal Cell Wall Damage in Thin-Layer Cascade Systems: A Fluid–Structure Interaction Approach. Waste Biomass-Valorization 2024, 15, 5819–5831. [Google Scholar] [CrossRef]
- Kinsey, T.; Dumas, G. Computational fluid dynamics analysis of a hydrokinetic turbine based on oscillating hydrofoils. J. Fluids Eng. Trans. ASME 2012, 134, 021104. [Google Scholar] [CrossRef]
Parameter | Symbol | Value |
---|---|---|
Profile | – | NACA0015 |
Chord length | c | 1.0 |
Pitch centre | xp | c/3 |
Heave amplitude | Ho/c | 1 |
Pitch amplitude | θo | 75° |
Frequency | f* | 0.14 |
Reynolds number | Re | 5 × 105 |
Phase angle | 90° | |
Duct width at throat | w | 3.5c |
Convergence angle | – | 15° |
Divergence angle | – | 15° |
Mesh Density | Grid Cells in Stationary Domain | Grid Cells in Moving Domain | % Difference in | |||
---|---|---|---|---|---|---|
D1 | 55.6 × 103 | 32.8 × 103 | 1.074 | −0.088 | 0.986 | − |
D2 | 91.3 × 103 | 54.1 × 103 | 1.101 | −0.108 | 0.993 | 0.7 |
D3 | 125.8 × 103 | 82.5 × 103 | 1.108 | −0.112 | 0.996 | 0.3 |
Unconfined (Baseline) | Straight | Convergent–Straight | Convergent–Divergent | |
---|---|---|---|---|
1.101 | 0.982 | 1.002 | 1.514 | |
−0.108 | −0.186 | −0.193 | 0.092 | |
0.993 | 0.795 | 0.808 | 1.606 | |
(%) | – | −19.8 | −18.4 | 67.5 |
(%) | 38.9 | 31.2 | 31.7 | 62.9 |
Unconfined (Baseline) | Straight | Convergent–Straight | Convergent–Divergent | |
---|---|---|---|---|
1.101 | 1.695 | 2.007 | 1.925 | |
−0.108 | 0.121 | 0.158 | 0.197 | |
0.993 | 1.817 | 2.165 | 2.122 | |
(%) | – | 82.9 | 118.1 | 113.7 |
(%) | 38.9 | 71.2 | 84.9 | 83.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, M.; Sohn, C.-H. Performance Evaluation of Flapping-Wing Energy Harvester in Confined Duct Environments. Energies 2025, 18, 4508. https://doi.org/10.3390/en18174508
Alam M, Sohn C-H. Performance Evaluation of Flapping-Wing Energy Harvester in Confined Duct Environments. Energies. 2025; 18(17):4508. https://doi.org/10.3390/en18174508
Chicago/Turabian StyleAlam, Maqusud, and Chang-Hyun Sohn. 2025. "Performance Evaluation of Flapping-Wing Energy Harvester in Confined Duct Environments" Energies 18, no. 17: 4508. https://doi.org/10.3390/en18174508
APA StyleAlam, M., & Sohn, C.-H. (2025). Performance Evaluation of Flapping-Wing Energy Harvester in Confined Duct Environments. Energies, 18(17), 4508. https://doi.org/10.3390/en18174508