Review of Digital Twin Technology in Low-Voltage Distribution Area and the Implementation Path Based on the ‘6C’ Development Goals
Abstract
1. Introduction
2. A Study on the Current Landscape and Emerging Trends of Digital Twin Technology in Low-Voltage Distribution Networks
2.1. Context for the Development of Digital Twin Technology in Low-Voltage Distribution Systems
2.2. State Estimation Techniques in LVDA-Oriented Digital Twin Systems
2.3. Sensing Technologies for LVDA Digital Twin Systems
2.4. Regulation and Control Technologies for LVDA Digital Twin Systems
2.5. Aggregation Technologies for Distributed Energy Resources in LVDA Digital Twin Systems
2.6. Emerging Devices and Terminals for LVDA Digital Twin Applications
3. Development Goals and Practices of the ‘6C’ in LVDA
3.1.‘6C’Development Goals for LVDA Digital Twin
3.2. Typical Practice Work of Provincial-Level New Distribution System Station Areas Based on the ‘6C’ Technical Development Goals
4. Discussion of Future Work
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Atstāja, D. Renewable Energy for Sustainable Development: Opportunities and Current Landscape. Energies 2025, 18, 196. [Google Scholar] [CrossRef]
- Singh, A.; Jately, V.; Kala, P.; Yang, Y.; Azzopardi, B. Advancements in Multilevel Inverters for Efficient Harnessing of Renewable Energy: A Comprehensive Review and Application Analysis. IEEE Access 2024, 12, 156939–156964. [Google Scholar] [CrossRef]
- Hou, J.; Hu, C.; Lei, S.; Hou, Y. Cyber resilience of power electronics-enabled power systems: A review. Renew. Sustain. Energy Rev. 2024, 189, 114036. [Google Scholar] [CrossRef]
- Sifat, M.M.H.; Choudhury, S.M.; Das, S.K.; Pota, H.; Yang, F. Novel abstractions and experimental validation for digital twin microgrid design: Lab scale studies and large scale proposals. Appl. Energy 2025, 377 Pt. C, 124621. [Google Scholar] [CrossRef]
- Bragatto, T.; Bucarelli, M.; Carere, F.; Cresta, M.; Gatta, F.; Geri, A.; Maccioni, M.; Paulucci, M.; Poursoltan, P.; Santori, F. Near real-time analysis of active distribution networks in a Digital Twin framework: A real case study. Sustain. Energy Grids Netw. 2023, 35, 101128. [Google Scholar] [CrossRef]
- Park, C.; Cho, S.; Heo, W. Study on the future sign detection in areas of academic interest related to the digitalization of the energy industry. J. Clean. Prod. 2021, 313, 127801. [Google Scholar] [CrossRef]
- Dileep, G. A survey on smart grid technologies and applications. Renew. Energy 2020, 146, 2589–2625. [Google Scholar] [CrossRef]
- Santos, G.R.; Zancul, E.; Manassero, G.; Spinola, M. From conventional to smart substations: A classification model. Electr. Power Syst. Res. 2023, 226, 109887. [Google Scholar] [CrossRef]
- López, G.; Moreno, J.; Amarís, H.; Salazar, F. Paving the road toward Smart Grids through large-scale advanced metering infrastructures. Electr. Power Syst. Res. 2015, 120, 194–205. [Google Scholar] [CrossRef]
- Khan, M.A.; Hayes, B. Three Phase State Estimation in Power Distribution Networks by Integrating IEEE-1588 with Smart Meters. In Proceedings of the 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), College Station, TX, USA, 2019; pp. 1–8. [Google Scholar]
- Sospiro, P.; Amarnath, L.; Di Nardo, V.; Talluri, G.; Gandoman, F.H. Smart Grid in China, EU, and the US: State of Implementation. Energies 2021, 14, 5637. [Google Scholar] [CrossRef]
- de Souza, R.W.R.; Moreira, L.R.; Rodrigues, J.J.; Moreira, R.R.; de Albuquerque, V.H.C. Deploying wireless sensor networks-based smart grid for smart meters monitoring and control. Int. J. Commun. Syst. 2018, 31, e3557. [Google Scholar] [CrossRef]
- Warraich, Z.; Morsi, W. Early detection of cyber–physical attacks on fast charging stations using machine learning considering vehicle-to-grid operation in microgrids. Sustain. Energy Grids Netw. 2023, 34, 101027. [Google Scholar] [CrossRef]
- Welankiwar, A.; Sharma, R.; Kumar, B. Challenges and mitigation techniques in adaptive protection for microgrids: Comprehensive review. Renew. Energy Focus 2024, 51, 100652. [Google Scholar] [CrossRef]
- Ettehad, M.T.; Chabanloo, R.M.; Ameli, M.T. A MILP model for optimal switch placement to enhance power distribution system performance in normal and hurricane conditions. Electr. Power Syst. Res. 2024, 232, 110361. [Google Scholar] [CrossRef]
- Sun, K.; Liu, J.; Qin, C.; Chen, X. A Method for Optimal Allocation of Distribution Network Resources Considering Power–Communication Network Coupling. Energies 2025, 18, 644. [Google Scholar] [CrossRef]
- Lotfi, H.; Hajiabadi, M.E.; Parsadust, H. Power Distribution Network Reconfiguration Techniques: A Thorough Review. Sustainability 2024, 16, 10307. [Google Scholar] [CrossRef]
- Smith, E.J.; Robinson, D.A.; Elphick, S. DER Control and Management Strategies for Distribution Networks: A Review of Current Practices and Future Directions. Energies 2024, 17, 2636. [Google Scholar] [CrossRef]
- Adnan, M.; Ahmed, I.; Iqbal, S.; Fazal, M.R.; Siddiqi, S.J.; Tariq, M. Exploring the convergence of Metaverse, Blockchain, Artificial Intelligence, and digital twin for pioneering the digitization in the envision smart grid 3.0. Comput. Electr. Eng. 2024, 120 Pt. B, 109709. [Google Scholar] [CrossRef]
- Khalid, M. Energy 4.0: AI-enabled digital transformation for sustainable power networks. Comput. Ind. Eng. 2024, 193, 110253. [Google Scholar] [CrossRef]
- Römer, B.; Reichhart, P.; Kranz, J.; Picot, A. The role of smart metering and decentralized electricity storage for smart grids: The importance of positive externalities. Energy Policy 2012, 50, 486–495. [Google Scholar] [CrossRef]
- Nijhuis, M.; Gibescu, M.; Cobben, J. Valuation of measurement data for low voltage network expansion planning. Electr. Power Syst. Res. 2017, 151, 59–67. [Google Scholar] [CrossRef]
- Andreadou, N.; Guardiola, M.O.; Fulli, G. Telecommunication Technologies for Smart Grid Projects with Focus on Smart Metering Applications. Energies 2016, 9, 375. [Google Scholar] [CrossRef]
- Sănduleac, M.; Ciornei, I.; Toma, L.; Plămnescu, R.; Dumitrescu, A.-M.; Albu, M.M. High Reporting Rate Smart Metering Data for Enhanced Grid Monitoring and Services for Energy Communities. IEEE Trans. Ind. Inform. 2022, 18, 4039–4048. [Google Scholar] [CrossRef]
- Sanduleac, M.; Lipari, G.; Monti, A.; Voulkidis, A.; Zanetto, G.; Corsi, A.; Toma, L.; Fiorentino, G.; Federenciuc, D. Next Generation Real-Time Smart Meters for ICT Based Assessment of Grid Data Inconsistencies. Energies 2017, 10, 857. [Google Scholar] [CrossRef]
- Ghiani, E.; Serpi, A.; Pilloni, V.; Sias, G.; Simone, M.; Marcialis, G.; Armano, G.; Pegoraro, P.A. A Multidisciplinary Approach for the Development of Smart Distribution Networks. Energies 2018, 11, 2530. [Google Scholar] [CrossRef]
- Lu, S.; Repo, S.; Giustina, D.D.; Figuerola, F.A.-C.; Löf, A.; Pikkarainen, M. Real-Time Low Voltage Network Monitoring—ICT Architecture and Field Test Experience. IEEE Trans. Smart Grid 2015, 6, 2002–2012. [Google Scholar] [CrossRef]
- He, J.; Han, Z.; Hu, J. Advanced Sensors Towards Ubiquitous Power Internet of Things. CSEE J. Power Energy Syst. 2024, 10, 871–890. [Google Scholar] [CrossRef]
- Odongo, G.Y.; Musabe, R.; Hanyurwimfura, D.; Bakari, A.D. An Efficient LoRa-Enabled Smart Fault Detection and Monitoring Platform for the Power Distribution System Using Self-Powered IoT Devices. IEEE Access 2022, 10, 73403–73420. [Google Scholar] [CrossRef]
- Ben-Shimol, Y.; Greenberg, S.; Danilchenko, K. Application-Layer Approach for Efficient Smart Meter Reading in Low-Voltage PLC Networks. IEEE Trans. Commun. 2018, 66, 4249–4258. [Google Scholar] [CrossRef]
- Zhou, L.; Li, Q.; Lin, G. Optimization Configuration Model for Intelligent Measurement Multi-Core Modules Considering “Cloud-Edge-End-Core” Collaboration. IEEE Access 2025, 13, 18228–18238. [Google Scholar] [CrossRef]
- Junior, R.M.G.; Márquez-Sánchez, S.; Santos, J.H.; de Almeida, R.M.A.; Junior, J.B.A.L.; Rodríguez, J.M.C. Validation of Embedded State Estimator Modules for Decentralized Monitoring of Power Distribution Systems Using IoT Components. Sensors 2022, 22, 2104. [Google Scholar] [CrossRef]
- Alguacil, N.; Herrero, H.; Solares, C. Observability Analysis and Restoration for Distribution Grids: A Robust Greedy Numerical Algorithm. IEEE Trans. Smart Grid 2023, 14, 4542–4552. [Google Scholar] [CrossRef]
- Bai, H.; Fu, Y.; Yang, W.; Li, Y.; Cai, Y.; Xu, M. Research on modeling method for digitizing distribution substation areas based on big data from smart meters. Arch. Electr. Eng. 2024, 73, 703–720. [Google Scholar] [CrossRef]
- Gao, B.; Kong, X.; Li, S.; Chen, Y.; Zhang, X.; Liu, Z.; Lv, W. Enhancing anomaly detection accuracy and interpretability in low-quality and class imbalanced data: A comprehensive approach. Appl. Energy 2024, 353, 122157. [Google Scholar] [CrossRef]
- Kaprál, D.; Braciník, P.; Roch, M.; Höger, M. Optimization of distribution network operation based on data from smart metering systems. Electr. Eng. 2017, 99, 1417–1428. [Google Scholar] [CrossRef]
- Kelm, P.; Wasiak, I.; Mieński, R.; Wędzik, A.; Szypowski, M.; Pawełek, R.; Szaniawski, K. Hardware-in-the-Loop Validation of an Energy Management System for LV Distribution Networks with Renewable Energy Sources. Energies 2022, 15, 2561. [Google Scholar] [CrossRef]
- Liu, F.; Liang, C.; He, Q. Remote Malfunctional Smart Meter Detection in Edge Computing Environment. IEEE Access 2020, 8, 67436–67443. [Google Scholar] [CrossRef]
- Liu, F.; Huang, H. Smart Meter Error Estimation in Topological Low Voltage Energy System. IEEE Access 2024, 12, 147422–147437. [Google Scholar] [CrossRef]
- Stegner, C.; Glaß, O.; Beikircher, T. Comparing smart metered, residential power demand with standard load profiles. Sustain. Energy Grids Netw. 2019, 20, 100248. [Google Scholar] [CrossRef]
- Haben, S.; Ward, J.; Greetham, D.V.; Singleton, C.; Grindrod, P. A new error measure for forecasts of household-level, high resolution electrical energy consumption. Int. J. Forecast. 2014, 30, 246–256. [Google Scholar] [CrossRef]
- Chen, Q.; Kaleshi, D.; Fan, Z.; Armour, S. Impact of Smart Metering Data Aggregation on Distribution System State Estimation. IEEE Trans. Ind. Inform. 2016, 12, 1426–1437. [Google Scholar] [CrossRef]
- Bragantini, A.; Sumper, A.; Gadelha, V.; Galceran-Arellano, S. Neural network-based three-phase state estimation for unobservable low voltage grids. Int. J. Electr. Power Energy Syst. 2025, 167, 110568. [Google Scholar] [CrossRef]
- Rasmussen, T.B.; Yang, G.; Nielsen, A.H. Interval estimation of voltage magnitude in radial distribution feeder with minimal data acquisition requirements. Int. J. Electr. Power Energy Syst. 2019, 113, 281–287. [Google Scholar] [CrossRef]
- Pilski, T.M.; Capuder, T.; Havelka, J. Identifying distribution network line parameters and voltage angles by utilizing physical knowledge: A neural network approach. Sustain. Energy Grids Netw. 2025, 41, 101606. [Google Scholar] [CrossRef]
- Bassi, V.; Ochoa, L.F.; Alpcan, T.; Leckie, C. Electrical Model-Free Voltage Calculations Using Neural Networks and Smart Meter Data. IEEE Trans. Smart Grid 2023, 14, 3271–3282. [Google Scholar] [CrossRef]
- Mokhtar, M.; Robu, V.; Flynn, D.; Higgins, C.; Whyte, J.; Loughran, C.; Fulton, F. Prediction of voltage distribution using deep learning and identified key smart meter locations. Energy AI 2021, 6, 100103. [Google Scholar] [CrossRef]
- Telford, R.; Stephen, B.; Browell, J.; Haben, S. Dirichlet Sampled Capacity and Loss Estimation for LV Distribution Networks with Partial Observability. IEEE Trans. Power Deliv. 2021, 36, 2676–2686. [Google Scholar] [CrossRef]
- Heidari-Akhijahani, A.; Safdarian, A.; Aminifar, F. Phase Identification of Single-Phase Customers and PV Panels via Smart Meter Data. IEEE Trans. Smart Grid 2021, 12, 4543–4552. [Google Scholar] [CrossRef]
- Simonovska, A.; Bassi, V.; Givisiez, A.G.; Ochoa, L.F.; Alpcan, T. An electrical model-free three-phase OPF for PV-rich LV networks using smart meter and transformer data. Electr. Power Syst. Res. 2025, 240, 111284. [Google Scholar] [CrossRef]
- Kippke Salomón, M.A.; Carou Álvarez, J.M.; Suárez Ramón, L.; Arboleya, P. Self-Diagnostic Advanced Metering Infrastructure Based on Power-Line Communication: A Study Case in Spanish Low-Voltage Distribution Networks. Energies 2025, 18, 1746. [Google Scholar] [CrossRef]
- Velasco, J.A.; Amaris, H.; Alonso, M. Deep Learning loss model for large-scale low voltage smart grids. Int. J. Electr. Power Energy Syst. 2020, 121, 106054. [Google Scholar] [CrossRef]
- Ma, C.; Menke, J.-H.; Dasenbrock, J.; Braun, M.; Haslbeck, M.; Schmid, K.-H. Evaluation of energy losses in low voltage distribution grids with high penetration of distributed generation. Appl. Energy 2019, 256, 113907. [Google Scholar] [CrossRef]
- Grigoras, G.; Neagu, B.-C. Smart Meter Data-Based Three-Stage Algorithm to Calculate Power and Energy Losses in Low Voltage Distribution Networks. Energies 2019, 12, 3008. [Google Scholar] [CrossRef]
- García, S.; Mora-Merchán, J.M.; Larios, D.F.; Personal, E.; Parejo, A.; León, C. Phase topology identification in low-voltage distribution networks: A Bayesian approach. Int. J. Electr. Power Energy Syst. 2023, 144, 108525. [Google Scholar] [CrossRef]
- Fang, L.; Pengwah, A.B.; Andrew, L.L.; Razzaghi, R.; Muñoz, M.A. Three-phase voltage sensitivity estimation and its application to topology identification in low-voltage distribution networks. Int. J. Electr. Power Energy Syst. 2024, 158, 109949. [Google Scholar] [CrossRef]
- Liu, D.; Giraldo, J.S.; Palensky, P.; Vergara, P.P. Topology identification and parameters estimation of LV distribution networks using open GIS data. Int. J. Electr. Power Energy Syst. 2025, 164, 110395. [Google Scholar] [CrossRef]
- Flynn, C.; Pengwah, A.B.; Razzaghi, R.; Andrew, L.L.H. An Improved Algorithm for Topology Identification of Distribution Networks Using Smart Meter Data and Its Application for Fault Detection. IEEE Trans. Smart Grid 2023, 14, 3850–3861. [Google Scholar] [CrossRef]
- Zhao, J.; Li, L.; Xu, Z.; Wang, X.; Wang, H.; Shao, X. Full-Scale Distribution System Topology Identification Using Markov Random Field. IEEE Trans. Smart Grid 2020, 11, 4714–4726. [Google Scholar] [CrossRef]
- Ahmed, M.O.; Lampe, L. Power Line Communications for Low-Voltage Power Grid Tomography. IEEE Trans. Commun. 2013, 61, 5163–5175. [Google Scholar] [CrossRef]
- Pengwah, A.B.; Gerdroodbari, Y.Z.; Razzaghi, R.; Andrew, L.L.H. Topology Identification of Distribution Networks with Partial Smart Meter Coverage. IEEE Trans. Power Deliv. 2024, 39, 992–1001. [Google Scholar] [CrossRef]
- Karunarathne, E.; Liu, M.Z.; Ochoa, L.F.; Alpcan, T. Using Real Smart Meter Data to Construct Three-Phase Low Voltage Network Models. IEEE Trans. Power Syst. 2025, 40, 2465–2477. [Google Scholar] [CrossRef]
- Fei, K.; Li, Q.; Zhu, C.; Dong, M.; Li, Y. Electricity frauds detection in Low-voltage networks with contrastive predictive coding. Int. J. Electr. Power Energy Syst. 2021, 137, 107715. [Google Scholar] [CrossRef]
- Ahmad, T. Non-technical loss analysis and prevention using smart meters. Renew. Sustain. Energy Rev. 2017, 72, 573–589. [Google Scholar] [CrossRef]
- Villar-Rodriguez, E.; Del Ser, J.; Oregi, I.; Bilbao, M.N.; Gil-Lopez, S. Detection of non-technical losses in smart meter data based on load curve profiling and time series analysis. Energy 2017, 137, 118–128. [Google Scholar] [CrossRef]
- Chen, D.; Li, W.; Fang, J. Blending-Based Ensemble Learning Low-Voltage Station Area Theft Detection. Energies 2025, 18, 31. [Google Scholar] [CrossRef]
- Henriques, H.; Corrêa, R.; Fortes, M.; Borba, B.; Ferreira, V. Monitoring technical losses to improve non-technical losses estimation and detection in LV distribution systems. Measurement 2020, 161, 107840. [Google Scholar] [CrossRef]
- Zulu, C.L.; Dzobo, O. Real-time power theft monitoring and detection system with double connected data capture system. Electr. Eng. 2023, 105, 3065–3083. [Google Scholar] [CrossRef]
- Vallée, F.; Klonari, V.; Lisiecki, T.; Durieux, O.; Moiny, F.; Lobry, J. Development of a probabilistic tool using Monte Carlo simulation and smart meters measurements for the long term analysis of low voltage distribution grids with photovoltaic generation. Int. J. Electr. Power Energy Syst. 2013, 53, 468–477. [Google Scholar] [CrossRef]
- Hayes, B.P.; Prodanovic, M. State Forecasting and Operational Planning for Distribution Network Energy Management Systems. IEEE Trans. Smart Grid 2016, 7, 1002–1011. [Google Scholar] [CrossRef]
- Dokur, E.; Erdogan, N.; Sengor, I.; Yuzgec, U.; Hayes, B.P. Near real-time machine learning framework in distribution networks with low-carbon technologies using smart meter data. Appl. Energy 2025, 384, 125433. [Google Scholar] [CrossRef]
- Weckx, S.; D’Hulst, R.; Driesen, J. Voltage Sensitivity Analysis of a Laboratory Distribution Grid with Incomplete Data. IEEE Trans. Smart Grid 2015, 6, 1271–1280. [Google Scholar] [CrossRef]
- Pasdar, A.; Mehne, H. Intelligent three-phase current balancing technique for single-phase load based on smart metering. Int. J. Electr. Power Energy Syst. 2011, 33, 693–698. [Google Scholar] [CrossRef]
- Rodriguez-Calvo, A.; Cossent, R.; Frías, P. Integration of PV and EVs in unbalanced residential LV networks and implications for the smart grid and advanced metering infrastructure deployment. Int. J. Electr. Power Energy Syst. 2017, 91, 121–134. [Google Scholar] [CrossRef]
- Mejdi, L.; Kardous, F.; Grayaa, K. Impact Analysis and Optimization of EV Charging Loads on the LV Grid: A Case Study of Workplace Parking in Tunisia. Energies 2022, 15, 7127. [Google Scholar] [CrossRef]
- Singh, U.; Solomon, R.; Alizadeh-Mousavi, O. Monitoring-Based Localization of Unbalances and Root Cause Analysis in Low-Voltage Distribution Systems. IEEE Syst. J. 2023, 17, 4177–4188. [Google Scholar] [CrossRef]
- Stefanidou-Voziki, P.; Sapountzoglou, N.; Raison, B.; Dominguez-Garcia, J. A review of fault location and classification methods in distribution grids. Electr. Power Syst. Res. 2022, 209, 108031. [Google Scholar] [CrossRef]
- Vieira, F.L.; Santos, P.H.M.; Filho, J.M.C.; Leborgne, R.C.; Leite, M.P. A Voltage-Based Approach for Series High Impedance Fault Detection and Location in Distribution Systems Using Smart Meters. Energies 2019, 12, 3022. [Google Scholar] [CrossRef]
- Jia, K.; Ren, Z.; Bi, T.; Yang, Q. Ground Fault Location Using the Low-Voltage-Side Recorded Data in Distribution Systems. IEEE Trans. Ind. Appl. 2015, 51, 4994–5001. [Google Scholar] [CrossRef]
- Jiang, Y. Data-Driven Fault Location of Electric Power Distribution Systems with Distributed Generation. IEEE Trans. Smart Grid 2020, 11, 129–137. [Google Scholar] [CrossRef]
- Stefanidou-Voziki, P.; Cardoner-Valbuena, D.; Villafafila-Robles, R.; Dominguez-Garcia, J. Data analysis and management for optimal application of an advanced ML-based fault location algorithm for low voltage grids. Int. J. Electr. Power Energy Syst. 2022, 142, 108303. [Google Scholar] [CrossRef]
- Numair, M.; Aboushady, A.A.; Arraño-Vargas, F.; Farrag, M.E.; Elyan, E. Fault Detection and Localisation in LV Distribution Networks Using a Smart Meter Data-Driven Digital Twin. Energies 2023, 16, 7850. [Google Scholar] [CrossRef]
- Trindade, F.C.L.; Freitas, W. Low Voltage Zones to Support Fault Location in Distribution Systems with Smart Meters. IEEE Trans. Smart Grid 2017, 8, 2765–2774. [Google Scholar] [CrossRef]
- Brint, A.; Poursharif, G.; Black, M.; Marshall, M. Using grouped smart meter data in phase identification. Comput. Oper. Res. 2018, 96, 213–222. [Google Scholar] [CrossRef]
- Huang, L.; Zhou, G.; Zeng, Y.; Zhang, J.; Feng, Y. Transformer-customer relationship identification based on deep Gaussian mixture model in low-voltage distribution system. Electr. Power Syst. Res. 2024, 234, 110591. [Google Scholar] [CrossRef]
- Zhou, L.; Wen, F.; Yang, X.; Zhong, Y. User-Transformer Connectivity Relationship Identification Based on Knowledge-Driven Approaches. IEEE Access 2022, 10, 54358–54371. [Google Scholar] [CrossRef]
- Sendin, A.; Berganza, I.; Arzuaga, A.; Osorio, X.; Urrutia, I.; Angueira, P. Enhanced Operation of Electricity Distribution Grids Through Smart Metering PLC Network Monitoring, Analysis and Grid Conditioning. Energies 2013, 6, 539–556. [Google Scholar] [CrossRef]
- Ibrahim Anwar Ibrahim, M.J. Hossain, Short-term multivariate time series load data forecasting at low-voltage level using optimised deep-ensemble learning-based models. Energy Convers. Manag. 2023, 296, 117663. [Google Scholar] [CrossRef]
- Grabner, M.; Wang, Y.; Wen, Q.; Blažič, B.; Štruc, V. A Global Modeling Framework for Load Forecasting in Distribution Networks. IEEE Trans. Smart Grid 2023, 14, 4927–4941. [Google Scholar] [CrossRef]
- Jurado, M.; Samper, M.; Rosés, R. An improved encoder-decoder-based CNN model for probabilistic short-term load and PV forecasting. Electr. Power Syst. Res. 2023, 217, 109153. [Google Scholar] [CrossRef]
- Kong, W.; Dong, Z.Y.; Hill, D.J.; Ma, J.; Zhao, J.H.; Luo, F.J. A Hierarchical Hidden Markov Model Framework for Home Appliance Modeling. IEEE Trans. Smart Grid 2016, 9, 3079–3090. [Google Scholar] [CrossRef]
- Duque, E.M.S.; Vergara, P.P.; Nguyen, P.H.; van der Molen, A.; Slootweg, J.G. Conditional Multivariate Elliptical Copulas to Model Residential Load Profiles from Smart Meter Data. IEEE Trans. Smart Grid 2021, 12, 4280–4294. [Google Scholar] [CrossRef]
- Azaza, M.; Wallin, F. Smart meter data clustering using consumption indicators: Responsibility factor and consumption variability. Energy Procedia 2017, 142, 2236–2242. [Google Scholar] [CrossRef]
- Wang, B.; Mazhari, M.; Chung, C.Y. A Novel Hybrid Method for Short-Term Probabilistic Load Forecasting in Distribution Networks. IEEE Trans. Smart Grid 2022, 13, 3650–3661. [Google Scholar] [CrossRef]
- Hangawatta, D.C.; Gargoom, A.; Kouzani, A.Z. Machine-Learning-Driven Identification of Electrical Phases in Low-Sampling-Rate Consumer Data. Energies 2025, 18, 128. [Google Scholar] [CrossRef]
- Yu, H.; Wu, Y.; Guan, W.; Zhang, D.; Yu, T.; Liu, Q. Practical Method for Data-Driven User Phase Identification in Low-Voltage Distribution Networks. Front. Energy Res. 2021, 9, 752571. [Google Scholar] [CrossRef]
- Rinaldi, S.; Della Giustina, D.; Ferrari, P.; Flammini, A. Distributed monitoring system for voltage dip classification over distribution grid. Sustain. Energy Grids Netw. 2016, 6, 70–80. [Google Scholar] [CrossRef]
- Junior, W.L.R.; Borges, F.A.S.; Rabelo, R.d.A.L.; Rodrigues, J.J.P.C.; Fernandes, R.A.S.; Silva, I.N. A methodology for detection and classification of power quality disturbances using a real-time operating system in the context of home energy management systems. Int. J. Energy Res. 2021, 45, 203. [Google Scholar]
- Luo, J.P.; Han, L.Q.; Yuan, L.L. Design of distributed power quality monitoring system for distribution house. In Proceedings of the 2019 International Conference on New Energy, Singapore, 3–5 May 2019; Volume 354. [Google Scholar]
- Artale, G.; Caravello, G.; Cataliotti, A.; Cosentino, V.; Di Cara, D.; Dipaola, N.; Guaiana, S.; Panzavecchia, N.; Sambataro, M.G.; Tinè, G. PQ and Harmonic Assessment Issues on Low-Cost Smart Metering Platforms: A Case Study. Sensors 2020, 20, 6361. [Google Scholar] [CrossRef]
- Wirth, G.; Lorenz, E.; Spring, A.; Becker, G.; Pardatscher, R.; Witzmann, R. Modeling the Maximum Power Output of a Distributed PV Fleet. Prog. Photovoltaics Res. Appl. 2014, 23, 1164–1181. [Google Scholar] [CrossRef]
- Rodriguez-Rivero, J.; Ramirez, J.; Martínez-Murcia, F.; Segovia, F.; Ortiz, A.; Salas, D.; Castillo-Barnes, D.; Illan, I.; Puntonet, C.; Jimenez-Mesa, C.; et al. Granger causality-based information fusion applied to electrical measurements from power transformers. Inf. Fusion 2020, 57, 59–70. [Google Scholar] [CrossRef]
- Klonari, V.; Toubeau, J.-F.; De Grève, Z.; Durieux, O.; Lobry, J.; Vallée, F. Probabilistic simulation framework for balanced and unbalanced low voltage networks. Int. J. Electr. Power Energy Syst. 2016, 82, 439–451. [Google Scholar] [CrossRef]
- Ma, K.; Gu, C.; Li, F. Estimation of Voltage-Driven Reinforcement Cost for LV Feeders Under 3-Phase Imbalance. IEEE Access 2016, 4, 1345–1354. [Google Scholar] [CrossRef]
- Mokhtari, G.; Nourbakhsh, G.; Zare, F.; Ghosh, A. Overvoltage prevention in LV smart grid using customer resources coordination. Energy Build. 2013, 61, 387–395. [Google Scholar] [CrossRef]
- Hoornaert, F.; D’hulst, R.; Vingerhoets, P.; Vanthournout, K.; Driesen, J. LV distribution network voltage control mechanism: Analysis of large-scale field-test. Sustain. Energy Grids Netw. 2016, 6, 7–13. [Google Scholar] [CrossRef]
- Borray, A.F.C.; Merino, J.; Torres, E.; Garcés, A.; Mazón, J. Centralised coordination of EVs charging and PV active power curtailment over multiple aggregators in low voltage networks. Sustain. Energy Grids Netw. 2021, 27, 100470. [Google Scholar] [CrossRef]
- Procopiou, A.T.; Petrou, K.; Ochoa, L.F.; Langstaff, T.; Theunissen, J. Adaptive Decentralized Control of Residential Storage in PV-Rich MV–LV Networks. IEEE Trans. Power Syst. 2018, 34, 2378–2389. [Google Scholar] [CrossRef]
- Liu, X.; Aichhorn, A.; Liu, L.; Li, H. Coordinated Control of Distributed Energy Storage System with Tap Changer Transformers for Voltage Rise Mitigation Under High Photovoltaic Penetration. IEEE Trans. Smart Grid 2012, 3, 897–906. [Google Scholar] [CrossRef]
- Rahman, M.A.; Choudhary, J. IoT-based compensation and control of power theft in weak distribution system. Eng. Res. Express 2023, 5, 045051. [Google Scholar] [CrossRef]
- Pinthurat, W.; Surinkaew, T.; Hredzak, B. Simultaneous Voltage Regulation and Unbalance Compensation in Distribution Systems with an Information-Driven Learning Approach. IEEE Trans. Ind. Inform. 2024, 20, 5888–5898. [Google Scholar] [CrossRef]
- Liu, B.; Meng, K.; Dong, Z.Y.; Wong, P.K.C.; Li, X. Load Balancing in Low-Voltage Distribution Network via Phase Reconfiguration: An Efficient Sensitivity-Based Approach. IEEE Trans. Power Deliv. 2020, 36, 2174–2185. [Google Scholar] [CrossRef]
- Jimenez, V.A.; Will, A.L.; Lizondo, D.F. Phase reassignment for load balance in low-voltage distribution networks. Int. J. Electr. Power Energy Syst. 2022, 137, 107691. [Google Scholar] [CrossRef]
- Klonari, V.; Meersman, B.; Bozalakov, D.; Vandoorn, T.L.; Vandevelde, L.; Lobry, J.; Vallée, F. A probabilistic framework for evaluating voltage unbalance mitigation by photovoltaic inverters. Sustain. Energy Grids Netw. 2016, 8, 1–11. [Google Scholar] [CrossRef]
- Amarnath, D.; Sujatha, S. Internet-of-Things-aided energy management in smart grid environment. J. Supercomput. 2020, 76, 2302–2314. [Google Scholar] [CrossRef]
- Gabdullin, Y.; Azzopardi, B. Impacts of Photovoltaics in Low-Voltage Distribution Networks: A Case Study in Malta. Energies 2022, 15, 6731. [Google Scholar] [CrossRef]
- Bekker, I.; Hofmann, L.; Mertens, A. Secondary control with grid-forming inverters for an island grid restoration approach without communication. Electr. Power Syst. Res. 2022, 213, 108498. [Google Scholar] [CrossRef]
- Su, X.; Masoum, M.A.S.; Wolfs, P.J. Optimal PV Inverter Reactive Power Control and Real Power Curtailment to Improve Performance of Unbalanced Four-Wire LV Distribution Networks. IEEE Trans. Sustain. Energy 2014, 5, 967–977. [Google Scholar] [CrossRef]
- Jaramillo, A.F.M.; Laverty, D.M.; Morrow, D.J.; del Rincon, J.M.; Foley, A.M. Load modelling and non-intrusive load monitoring to integrate distributed energy resources in low and medium voltage networks. Renew. Energy 2021, 179, 445–466. [Google Scholar] [CrossRef]
- Haben, S.; Singleton, C.; Grindrod, P. Analysis and Clustering of Residential Customers Energy Behavioral Demand Using Smart Meter Data. IEEE Trans. Smart Grid 2016, 7, 136–144. [Google Scholar] [CrossRef]
- Grigoraș, G.; Raboaca, M.S.; Dumitrescu, C.; Manea, D.L.; Mihaltan, T.C.; Niculescu, V.-C.; Neagu, B.C. Contributions to Power Grid System Analysis Based on Clustering Techniques. Sensors 2023, 23, 1895. [Google Scholar] [CrossRef]
- Fu, Q.; Yang, X.; Ren, J.; Zhao, Y.; Yang, H.; Pan, S. Load Identification of Low-voltage Station Area Based on Power Metering Sensor and Deep Reinforcement Learning. Sensors Mater. 2023, 35, 3057–3069. [Google Scholar] [CrossRef]
- Pilo, F.; Pisano, G.; Ruggeri, S.; Troncia, M. Data Analytics for Profiling Low-Voltage Customers with Smart Meter Readings. Appl. Sci. 2021, 11, 500. [Google Scholar] [CrossRef]
- Poghosyan, A.; Greetham, D.V.; Haben, S.; Lee, T. Long term individual load forecast under different electrical vehicles uptake scenarios. Appl. Energy 2015, 157, 699–709. [Google Scholar] [CrossRef]
- Shaban, M.; Alsharekh, M.F. Design of a Smart Distribution Panelboard Using IoT Connectivity and Machine Learning Techniques. Energies 2022, 15, 3658. [Google Scholar] [CrossRef]
- Yang, B.; Inoue, K.; Yan, Z.; Wang, Z.; Kitazaki, S.; Nakano, K. Influences of Level 2 Automated Driving on Driver Behaviors: A Comparison with Manual Driving. IEEE Trans. Intell. Transp. Syst. 2024, 25, 144–158. [Google Scholar] [CrossRef]
- Gaggero, G.B.; Armellin, A.; Girdinio, P.; Marchese, M. An IEC 62443-Based Framework for Secure-by-Design Energy Communities. IEEE Access 2024, 12, 166320–166332. [Google Scholar] [CrossRef]
- Rojas-Cortés, A.L.; Trejo-Macotela, F.R.; Ramos-Fernández, J.C.; Simancas-Acevedo, E.; Camarillo, D.R. Advanced metering infrastructure system and massive data simulation, based on the smart grid concept. IEEE Lat. Am. Trans. 2023, 21, 1199–1208. [Google Scholar] [CrossRef]
- Almassalkhi, M.; Frolik, J.; Hines, P. Packetizing the Power Grid: The rules of the Internet can also Balance Electricity Supply and Demand. IEEE Spectr. 2022, 59, 42–47. [Google Scholar] [CrossRef]
- Saunders, C.S.; Liu, G.; Yu, Y.; Zhu, W. Data-driven distributed analytics and control platform for smart grid situational awareness. CSEE J. Power Energy Syst. 2016, 2, 51–58. [Google Scholar] [CrossRef]
- Ochoa, D.E.; Galarza-Jimenez, F.; Wilches-Bernal, F.; Schoenwald, D.A.; Poveda, J.I. Control Systems for Low-Inertia Power Grids: A Survey on Virtual Power Plants. IEEE Access 2023, 11, 20560–20581. [Google Scholar] [CrossRef]
- Ruiz-Alvarez, A.; Colet-Subirachs, A.; Figuerola, F.A.-C.; Gomis-Bellmunt, O.; Sudria-Andreu, A. Operation of a Utility Connected Microgrid Using an IEC 61850-Based Multi-Level Management System. IEEE Trans. Smart Grid 2012, 3, 858–865. [Google Scholar] [CrossRef]
- Della Giustina, D.; Ferrari, P.; Flammini, A.; Rinaldi, S.; Sisinni, E. Automation of Distribution Grids with IEC 61850: A First Approach Using Broadband Power Line Communication. IEEE Trans. Instrum. Meas. 2013, 62, 2372–2383. [Google Scholar] [CrossRef]
- Jimenez, V.M.M.; Gonzalez, E.P. The Role of Artificial Intelligence in Latin Americas Energy Transition. IEEE Lat. Am. Trans. 2022, 20, 2404–2412. [Google Scholar] [CrossRef]
- Photovoltaics, D.G.; Storage, E. IEEE Guide for Smart Grid Interoperability of Energy Technology and Information Technology Operation with the Electric Power System (EPS), End-Use Applications, and Loads; IEEE Std 2030-2011; IEEE: New York, NY, USA, 2011; pp. 1–126. [Google Scholar]
LVDA State | Core Perceived Objectives | Main Technical Approaches | Validation Approach | Representative Literature |
---|---|---|---|---|
Three-phase grid voltage state recognition | Accurate acquisition of voltage amplitude, phase, and voltage difference between nodes | Deep learning, interval arithmetic electrical-free model algorithms algorithms for locally observed data | Both simulation and field test | [42,43,44,45,46,47,48,49] |
Tidal current calculation | Estimated regional current distribution for low-voltage distribution | Calculation method for PV-enriched stations AMI data-based tidal current calculation | Both simulation and field test | [50,51] |
Line Energy Loss Calculation | Optimization of the distribution structure to reduce energy losses | Calculation of three-phase unbalance conditions, GIS data fusion, and integrated three-phase estimation | Field test | [52,53,54] |
Topological identification | Identify frequently changing low-voltage network topologies | Bayesian estimation, voltage sensitivity factor, fusion of OSM maps and meter data, graph learning techniques | Both simulation and field test | [55,56,57,58,59,60,61,62] |
Estimation of non-technical losses | Detecting power theft and reducing economic losses | Load time series prediction, deep learning, LV line temperature monitoring, edge device calibration optimization | Field test | [63,64,65,66,67,68] |
Voltage overrun sensing and prediction | Predicting voltage anomalies to ensure power quality | Monte Carlo algorithm, near-real-time machine-learning framework, and linear correlation analysis of historical data | Simulation | [69,70,71,72] |
Identification of three-phase voltage unbalance | Monitoring of the three-phase unbalanced state of the power grid | Power carrier communication devices, single-phase distributed power supply impact analysis, and load impact regulation | Field test | [73,74,75,76] |
Fault Detection and Location | Quickly locate short-circuit faults to improve power supply reliability | Smart metering device recording, AI model-free algorithms, impedance state measurement, fault indicator fusion | Simulation | [77,78,79,80,81,82,83] |
User-transformer relationship identification | Accurately correlate transformers and users to avoid billing errors | Gaussian clustering algorithms, data-driven, and principal component analysis | Field test | [84,85,86,87] |
Load identification and behavioral forecasting | Identify multiple types of loads and predict short-term electricity behavior | Global computing frameworks, deep learning models, load classification management, and Monte Carlo statistical forecasting | Simulation | [88,89,90,91,92,93,94] |
Phase recognition | Accurate identification of grid phases at low sampling rates | Generative Adversarial Network (GAN) augmented data, and nonlinear dimensionality reduction algorithms | Simulation | [95,96] |
Power quality monitoring | Extension of power quality anomaly detection to low-voltage areas | Accurate timing strategy, hardware chip design, and reuse of existing meter platforms | Field test | [97,98,99,100] |
Equipment condition monitoring | Predicting distributed power output and transformer health status | Meteorological data prediction, medium and low voltage electrical quantity fusion, causal information fusion | Simulation | [101,102] |
Estimated cost-benefit of grid operation | Optimize operational strategies and analyze costs and benefits | Dynamic optimization of operating strategies, voltage-driven reinforcement cost estimation | Simulation | [103,104] |
Control Methods | Principles | Applicability | limitations | Representative Literature |
---|---|---|---|---|
Localized control for voltage support | Reactive power coordination of residential PV sources | Medium | User privacy restrictions | [105] |
User electrical equipment adjustment | Adjust the power of electrical appliances according to the grid voltage | Medium | Performance limitations of household appliances | [106] |
Photovoltaic and charging pile collaborative technology | Energy storage stabilizes the fluctuations in photovoltaic power | High | The cost is slightly high | [107,108] |
Distributed energy storage, OLTC, and SVR coordination | The wide-range operating characteristics of the transformer voltage | Medium | Coordinate among multiple parties | [109] |
STATCOM operates flexibly based on the information from the electricity meter | Reactive power compensation | High | Certification of management methods by the power grid | [110] |
Distributed power cluster regulation based on electricity meters | Reactive power compensation | High | User privacy restrictions | [111] |
Phase reconfiguration voltage regulation method | Phase reconfiguration | High | The effect of overloading LVDA is limited | [112,113] |
Distributed power supply control based on the probability of voltage imbalance | Phase reconfiguration | Medium | User privacy restrictions | [114] |
Regulation of individual photovoltaic panels based on voltage state | MPPT technology for photovoltaic panels | Low | The diversity of equipment manufacturers and user privacy | [115] |
LVDA power adjustment based on photovoltaic power regulation | Distributed secondary control | Low | The location and output of distributed power sources in LVDA are variable | [116,117] |
Power flow adjustment of LVDA | Electric power flow theory | Medium | LVDA requires the extensive deployment of voltage and current sensors | [118] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Zhao, F.; Zhou, K.; Yu, X.; Jin, Q.; Li, R.; Shuai, Z. Review of Digital Twin Technology in Low-Voltage Distribution Area and the Implementation Path Based on the ‘6C’ Development Goals. Energies 2025, 18, 4459. https://doi.org/10.3390/en18174459
Peng Y, Zhao F, Zhou K, Yu X, Jin Q, Li R, Shuai Z. Review of Digital Twin Technology in Low-Voltage Distribution Area and the Implementation Path Based on the ‘6C’ Development Goals. Energies. 2025; 18(17):4459. https://doi.org/10.3390/en18174459
Chicago/Turabian StylePeng, Yuxiang, Feng Zhao, Ke Zhou, Xiaoyong Yu, Qingren Jin, Ruien Li, and Zhikang Shuai. 2025. "Review of Digital Twin Technology in Low-Voltage Distribution Area and the Implementation Path Based on the ‘6C’ Development Goals" Energies 18, no. 17: 4459. https://doi.org/10.3390/en18174459
APA StylePeng, Y., Zhao, F., Zhou, K., Yu, X., Jin, Q., Li, R., & Shuai, Z. (2025). Review of Digital Twin Technology in Low-Voltage Distribution Area and the Implementation Path Based on the ‘6C’ Development Goals. Energies, 18(17), 4459. https://doi.org/10.3390/en18174459