Convective Heat Loss Prediction Using the Concept of Effective Wind Speed for Dynamic Line Rating Studies
Abstract
1. Introduction
2. Effective Wind Speed Modelling
2.1. Concept of Effective Wind Speed
2.2. Specific Estimation of Effective Wind Speed
3. Ultra-Short-Term Wind Forecasting
3.1. Ultra-Short-Time EWS Forecasting
3.1.1. Temporal Trend Modelling
3.1.2. Autoregressive Model
3.2. Ultra-Short-Time Forecasting of Wind Speeds and Directions
3.2.1. Vector Autoregressive Model
3.2.2. Decomposition of Wind Directions
4. Results
4.1. EWS Estimation from Wind Condition Measurements
4.2. Determination of AR Order for EWS Forecasting
4.3. Ultra-Short-Term Forecasting of Effective Wind Speed
4.4. Convective Heat Loss Forecasting by Different Methods
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DLR | Dynamic Line Rating |
OHLs | Overhead Lines |
EWS | Effective Wind Speed |
AR | Autoregressive |
QRF | Quantile Regression Forests |
NWPs | Numerical Weather Predictions |
ELM | Extreme Learning Machine |
H-ELM | Hierarchical Extreme Learning Machine |
References
- Xiao, R.; Xiang, Y.; Wang, L.; Xie, K. Power System Reliability Evaluation Incorporating Dynamic Thermal Rating and Network Topology Optimization. IEEE Trans. Power Syst. 2018, 33, 6000–6012. [Google Scholar] [CrossRef]
- Su, Y.; Tan, M.; Teh, J. Short-Term Transmission Capacity Prediction of Hybrid Renewable Energy Systems Considering Dynamic Line Rating Based on Data-Driven Model. IEEE Trans. Ind. Applicat. 2025, 61, 2410–2420. [Google Scholar] [CrossRef]
- Fan, F.; Stephen, B.; Bell, K.; Infield, D.; McArthur, S. Impacts of Measurement Errors on Real-Time Thermal Rating Estimation for Overhead Lines. IEEE Trans. Power Deliv. 2023, 38, 1086–1096. [Google Scholar] [CrossRef]
- 738TM-2012; IEEE Standard for Calculating the Current-Temperature Relationship of Bare Overhead Conductors (Revision of IEEE Std 738-2006/Incorporates IEEE Std 738-2012/Cor 1-2013). IEEE: Piscataway, NJ, USA, 2013.
- Foss, S.D.; Maraio, R.A. Dynamic Line Rating in the Operating Environment. IEEE Trans. Power Deliv. 1990, 5, 1095–1105. [Google Scholar] [CrossRef]
- Douglass, D.A.; Grant, I.; Jardini, J.A.; Kluge, R.; Traynor, P.; Davis, C.; Gentle, J.; Nguyen, H.-M.; Chisholm, W.; Xu, C.; et al. A Review of Dynamic Thermal Line Rating Methods with Forecasting. IEEE Trans. Power Deliv. 2019, 34, 2100–2109. [Google Scholar] [CrossRef]
- Fan, F.; Bell, K.; Infield, D. Probabilistic Real-Time Thermal Rating Forecasting for Overhead Lines by Conditionally Heteroscedastic Auto-Regressive Models. IEEE Trans. Power Deliv. 2017, 32, 1881–1890. [Google Scholar] [CrossRef]
- Fan, F.; Bell, K.; Infield, D. Transient-State Real-Time Thermal Rating Forecasting for Overhead Lines by an Enhanced Analytical Method. Electr. Power Syst. Res. 2019, 167, 213–221. [Google Scholar] [CrossRef]
- Madadi, S.; Mohammadi-Ivatloo, B.; Tohidi, S. Probabilistic Real-Time Dynamic Line Rating Forecasting Based on Dynamic Stochastic General Equilibrium with Stochastic Volatility. IEEE Trans. Power Deliv. 2021, 36, 1631–1639. [Google Scholar] [CrossRef]
- Dupin, R.; Kariniotakis, G.; Michiorri, A. Overhead Lines Dynamic Line Rating Based on Probabilistic Day-Ahead Forecasting and Risk Assessment. Int. J. Electr. Power Energy Syst. 2019, 110, 565–578. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, P.; Zhang, Z.; Dai, Y. Real-Time Dynamic Line Rating of Transmission Lines Using Live Simulation Model and Tabu Search. IEEE Trans. Power Deliv. 2021, 36, 1785–1794. [Google Scholar] [CrossRef]
- Bosisio, A.; Berizzi, A.; Le, D.-D.; Bassi, F.; Giannuzzi, G. Improving DTR Assessment by Means of PCA Applied to Wind Data. Electr. Power Syst. Res. 2019, 172, 193–200. [Google Scholar] [CrossRef]
- Ahmadi, A.; Taheri, S.; Ghorbani, R.; Vahidinasab, V.; Mohammadi-ivatloo, B. Decomposition-Based Stacked Bagging Boosting Ensemble for Dynamic Line Rating Forecasting. IEEE Trans. Power Deliv. 2023, 38, 2987–2997. [Google Scholar] [CrossRef]
- Fernandez Martinez, R.; Alberdi, R.; Fernandez, E.; Albizu, I.; Bedialauneta, M.T. Improvement of Transmission Line Ampacity Utilization via Machine Learning-Based Dynamic Line Rating Prediction. Electr. Power Syst. Res. 2024, 236, 110931. [Google Scholar] [CrossRef]
- Song, T.; Teh, J. Dynamic Thermal Line Rating Model of Conductor Based on Prediction of Meteorological Parameters. Electr. Power Syst. Res. 2023, 224, 109726. [Google Scholar] [CrossRef]
- Lawal, O.A.; Teh, J. Dynamic Line Rating Forecasting Algorithm for a Secure Power System Network. Expert Syst. Appl. 2023, 219, 119635. [Google Scholar] [CrossRef]
- Aznarte, J.L.; Siebert, N. Dynamic Line Rating Using Numerical Weather Predictions and Machine Learning: A Case Study. IEEE Trans. Power Deliv. 2017, 32, 335–343. [Google Scholar] [CrossRef]
- Mansour Saatloo, A.; Moradzadeh, A.; Moayyed, H.; Mohammadpourfard, M.; Mohammadi-Ivatloo, B. Hierarchical Extreme Learning Machine Enabled Dynamic Line Rating Forecasting. IEEE Syst. J. 2022, 16, 4664–4674. [Google Scholar] [CrossRef]
- Sun, X.; Luh, P.B.; Cheung, K.W.; Guan, W. Probabilistic Forecasting of Dynamic Line Rating for Over-Head Transmission Lines. In Proceedings of the 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; pp. 1–5. [Google Scholar]
- Douglass, D.; Chisholm, W.; Davidson, G.; Grant, I.; Lindsey, K.; Lancaster, M.; Lawry, D.; McCarthy, T.; Nascimento, C.; Pasha, M.; et al. Real-Time Overhead Transmission-Line Monitoring for Dynamic Rating. IEEE Trans. Power Deliv. 2016, 31, 921–927. [Google Scholar] [CrossRef]
- McAdams, W.H. Heat Transmission, 3rd ed; McGraw-Hill: New York, NY, USA, 1954. [Google Scholar]
- Shi, Y.; Zhang, L.; Sheng, Y. Ridge Estimation of Uncertain Vector Autoregressive Model with Imprecise Data. J. Ambient Intell. Human Comput. 2024, 15, 2143–2152. [Google Scholar] [CrossRef]
- Lee, M.; Han, C. Ordinary Least Squares and Instrumental-Variables Estimators for Any Outcome and Heterogeneity. Stata J. Promot. Commun. Stat. Stata 2024, 24, 72–92. [Google Scholar] [CrossRef]
- Mignon, V. Principles of Econometrics: Theory and Applications; Classroom Companion: Economics; Springer: Cham, Switzerland, 2024; ISBN 978-3-031-52534-6. [Google Scholar]
- Fan, F.; Bell, K.; Infield, D. Probabilistic Weather Forecasting for Dynamic Line Rating Studies. In Proceedings of the 2016 Power Systems Computation Conference, Genoa, Italy, 20–24 June 2016; pp. 1–7. [Google Scholar]
Line Orientation | Shape Parameter | Scale Parameter | Mean Value |
---|---|---|---|
0° | 1.9556 | 3.4749 | 6.7955 |
30° | 2.0302 | 3.2293 | 6.5561 |
60° | 1.9493 | 3.0719 | 5.9880 |
90° | 1.8897 | 3.0002 | 5.6695 |
Line Orientation | One-Step-Ahead | Two-Step-Ahead | Three-Step-Ahead |
---|---|---|---|
0° | 1.3770 | 1.7339 | 1.9551 |
30° | 1.3598 | 1.7274 | 1.9492 |
60° | 1.3595 | 1.7489 | 1.9793 |
90° | 1.3861 | 1.7792 | 2.0074 |
Line Orientation | One-Step-Ahead | Two-Step-Ahead | Three-Step-Ahead |
---|---|---|---|
0° | 1.4269 | 1.8241 | 2.0738 |
30° | 1.4068 | 1.8213 | 2.0763 |
60° | 1.4015 | 1.8401 | 2.1063 |
90° | 1.4304 | 1.8733 | 2.1345 |
Methods | Line Orientation | One-Step-Ahead | Two-Step-Ahead | Three-Step-Ahead |
---|---|---|---|---|
VAR1-based | 0° | 92.79 | 119.04 | 134.60 |
30° | 92.78 | 119.87 | 135.59 | |
60° | 94.67 | 123.04 | 139.07 | |
90° | 95.62 | 123.48 | 138.96 | |
VAR2-based | 0° | 93.27 | 120.24 | 136.50 |
30° | 93.10 | 120.71 | 137.03 | |
60° | 94.84 | 123.88 | 140.74 | |
90° | 95.84 | 124.23 | 140.56 | |
EWS-based | 0° | 92.14 | 117.50 | 132.25 |
30° | 91.90 | 117.82 | 132.66 | |
60° | 93.55 | 120.77 | 136.13 | |
90° | 94.42 | 120.98 | 135.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Fan, F.; Wang, Y.; Wang, K.; Jiang, J.; Sun, C.; Xue, R.; Song, K. Convective Heat Loss Prediction Using the Concept of Effective Wind Speed for Dynamic Line Rating Studies. Energies 2025, 18, 4452. https://doi.org/10.3390/en18164452
Wang Y, Fan F, Wang Y, Wang K, Jiang J, Sun C, Xue R, Song K. Convective Heat Loss Prediction Using the Concept of Effective Wind Speed for Dynamic Line Rating Studies. Energies. 2025; 18(16):4452. https://doi.org/10.3390/en18164452
Chicago/Turabian StyleWang, Yuxuan, Fulin Fan, Yu Wang, Ke Wang, Jinhai Jiang, Chuanyu Sun, Rui Xue, and Kai Song. 2025. "Convective Heat Loss Prediction Using the Concept of Effective Wind Speed for Dynamic Line Rating Studies" Energies 18, no. 16: 4452. https://doi.org/10.3390/en18164452
APA StyleWang, Y., Fan, F., Wang, Y., Wang, K., Jiang, J., Sun, C., Xue, R., & Song, K. (2025). Convective Heat Loss Prediction Using the Concept of Effective Wind Speed for Dynamic Line Rating Studies. Energies, 18(16), 4452. https://doi.org/10.3390/en18164452