Dual-Mode Laguerre MPC and Its Application in Inertia-Frequency Regulation of Power Systems
Abstract
1. Introduction
2. The Theoretical Analysis and the Modeling Method for a Virtual Inertia Involved Single Area Power System
2.1. The Modeling of the Frequency Regulation System
2.2. The Influence of H, D and the Virtual Inertia on the Frequency Stability
2.2.1. System Stability Analysis with Smaller H and D
2.2.2. System Stability Analysis with Virtual Inertia
3. Laguerre-Based Dual-Mode MPC Strategy
3.1. The Discrete-Time LAGUERRE Function
3.2. The SISO-MPC Stage
3.3. The MIMO-MPC Stage
3.4. The Tow Stage Parameter Optimization
4. Case Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Tables
Category | Symbol | Description | Unit | Value |
---|---|---|---|---|
Acronyms | ACE | Area Control Error | pu | - |
BESS | Battery Energy Storage System | - | - | |
DER | Distributed Energy Resource | - | - | |
ESS | Energy Storage System | - | - | |
GPC | Generalized Predictive Control | - | - | |
GSA | Gravitational Search Algorithm | - | - | |
LFC | Load Frequency Control | - | - | |
L-MPC | Laguerre-based Model Predictive Control | - | - | |
MPC | Model Predictive Control | - | - | |
PCC | Point of Common Coupling | - | - | |
PI | Proportional-Integral (controller) | - | - | |
PLL | Phase-Locked Loop | - | - | |
RE | Renewable Energy | - | - | |
ROCOF | Rate of Change of Frequency | pu/s | - | |
SISO/MIMO | Single/Multiple-Input Multiple-Output | - | - | |
VI | Virtual Inertia | - | - | |
VSG | Virtual Synchronous Generator | - | - | |
Symbols | Frequency deviation | pu | - | |
Turbine output power change | pu | - | ||
ESS output power change | pu | - | ||
Governor valve position change | pu | - | ||
Rotor mechanical speed | rad/s | - | ||
Laguerre function scaling factor | - | 0.1 | ||
Bias factor | pu MW/Hz | 2 | ||
Damping coefficient | pu MW/Hz | 1/0.8/0.6 | ||
System frequency | Hz | 50/60 | ||
Inertia constant | s | 25/20/15 | ||
Equivalent inertia (SGs) | s | - | ||
Virtual inertia (from ESS) | s | - | ||
ESS operational burden index | pu | - | ||
Speed governor gain | s | 10 | ||
ESS gain | s | 1.6 | ||
Power system gain constant | s | 100 | ||
Turbine gain | s | 0.05 | ||
Virtual inertia control gain for ROCOF | - | - | ||
Damping control gain | - | - | ||
Laguerre series dimension | - | 3 | ||
Prediction horizon | - | - | ||
Pole pairs (synchronous generator) | - | - | ||
Load disturbance | pu | - | ||
Load disturbance (freq. independent) | pu | - | ||
Tie-line power exchange | pu | 0 (fixed) | ||
Droop coefficient | pu MW/Hz | 1 | ||
Speed governor time constant | s | 0.4 | ||
ESS time constant | s | 10 | ||
Turbine time constant | s | 0.5 | ||
Secondary control variable | pu | - | ||
Inertia control variable | pu | - | ||
State vector: | pu | - | ||
Output vector: | pu | - | ||
Subscripts | Discrete time index | - | - | |
min/max | Minimum/Maximum value | - | - | |
Reference/Actual value | - | - |
Case & Scenario | Controller | ACE Nadir/Peak(pu) | ROCOF Peak (pu/s) | Settling Time (s) | ESS Mileage (pu) | Hvir (s) |
---|---|---|---|---|---|---|
1. Time-gap impact (Figure 7) | ||||||
PL = −0.5% pu | PI (0 s delay) | −0.0080 | −0.0052 | 22.6 | 0.53 | 15 |
PI (4 s delay) | −0.0110 | −0.00071 | 24.1 | 0.75 | 15 | |
2. Controller robustness (Figure 8) | ||||||
PL = −0.5% pu | Two-PI | −0.0153 | −0.0035 | 11.7 | 0.545 | 15 |
Two-GPC | −0.0087 | −0.0042 | 10.05 | 0.75 | 15 | |
MIMO-MPC | −0.0080 | −0.0021 | 6.2 | 0.94 | 15 | |
PL = −1.0% pu | Two-PI | −0.0306 | −0.0045 | 13.1 | 2.21 | 15 |
Two-GPC | −0.0133 | −0.0062 | 13.5 | 1.63 | 15 | |
MIMO-MPC | −0.0098 | −0.0023 | 7.1 | 1.86 | 15 | |
PL = −1.2% pu | Two-PI | −0.0367 | −0.0052 | 13.7 | 2.23 | 15 |
Two-GPC | −0.0159 | −0.0075 | 13.7 | 1.73 | 15 | |
MIMO-MPC | −0.0115 | −0.0043 | 8.5 | 2.85 | 15 | |
3. H/D sensitivity (Figure 4) | ||||||
PL = −0.2% pu | PI (H = 25 s, D = 1.5) | 0.024 | −0.0010 | 33.2 | – | 25 |
PI (H = 20 s, D = 1.5) | 0.027 | −0.0014 | 33.1 | – | 20 | |
PI (H = 15 s, D = 1.5) | 0.038 | −0.0018 | 29.9 | – | 15 | |
PL = −0.2% pu | PI (H = 15 s, D = 1) | 0.031 | 0.0015 | 37.2 | – | 15 |
PI (H = 10 s, D = 1.2) | 0.034 | 0.0015 | 37.2 | – | 15 | |
PI (H = 15 s, D = 1.5) | 0.038 | 0.0015 | 37.2 | – | 15 | |
4. J2 optimization (Figure 9) | ||||||
PL = −0.5% pu | MIMO-MPC (w/o J2, H = 15 s) | −0.0080 | −0.0016 | 6.2 | 0.98 | 15 |
MIMO-MPC (w/J2, H = 15 s) | −0.0082 | −0.0017 | 6.8 | 0.94 | 15 |
Appendix B. The Discrete-Time Laguerre Function
Appendix C. Discrete-Time System Model
References
- Chen, L.; Xie, X.R.; He, J.B.; Xu, T.; Xu, D.C.; Ma, N.N. Wideband oscillation monitoring in power systems with high-penetration of renewable energy sources and power electronics: A review. Renew. Sust. Energ. Rev. 2023, 175, 11. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, G.; Li, K.; Li, B.; Chi, H.; Yao, Y.; Fan, Z. Reactive power optimization of a distribution network with high-penetration of wind and solar renewable energy and electric vehicles. Prot. Control Mod. Power Syst. 2023, 7, 51. [Google Scholar] [CrossRef]
- Jung, J.; Park, J.; Lee, H.; Lee, B. Evaluation of inertia resource for securing nadir frequency in HVDC interconnected system with high penetration of RES. Energy Rep. 2023, 9, 1374–1383. [Google Scholar] [CrossRef]
- Daly, P.; Flynn, D.; Cunniffe, N. Inertia Considerations within Unit Commitment and Economic Dispatch for Systems with High Non-Synchronous Penetrations. In Proceedings of the 2015 IEEE PowerTech, Eindhoven, The Netherlands, 29 June–2 July 2015; IEEE: Eindhoven, The Netherlands, 2015. [Google Scholar]
- Liu, W.; Zheng, Y.; Chen, Q.; Geng, D. An adaptive CGPC based anti-windup PI controller with stability constraints for the intermittent power penetrated system. Int. J. Electr. Power Energy Syst. 2021, 130, 106922. [Google Scholar] [CrossRef]
- Makolo, P.; Zamora, R.; Lie, T.-T. The role of inertia for grid flexibility under high penetration of variable renewables-A review of challenges and solutions. Renew. Sust. Energ. Rev. 2021, 147, 111223. [Google Scholar] [CrossRef]
- Shair, J.; Li, H.; Hu, J.; Xie, X. Power system stability issues, classifications and research prospects in the context of high-penetration of renewables and power electronics. Renew. Sust. Energ. Rev. 2021, 145, 111111. [Google Scholar] [CrossRef]
- Rezaei, N.; Kalantar, M. Smart microgrid hierarchical frequency control ancillary service provision based on virtual inertia concept: An integrated demand response and droop controlled distributed generation framework. Energy Convers. Manag. 2015, 92, 287–301. [Google Scholar] [CrossRef]
- Brown, T.W.; Bischof-Niemz, T.; Blok, K.; Breyer, C.; Lund, H.; Mathiesen, B.V. Response to ‘Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems’. Renew. Sust. Energ. Rev. 2018, 92, 834–847. [Google Scholar] [CrossRef]
- Mohanty, D.; Giri, A.; Panda, S. Frequency regulation by optimized fuzzy based self-adaptive virtual inertia control for microgrid with variable renewable penetration. J. Energy Storage 2024, 104, 114433. [Google Scholar] [CrossRef]
- Yang, W.; Norrlund, P.; Saarinen, L.; Witt, A.; Smith, B.; Yang, J.; Lundin, U. Burden on hydropower units for short-term balancing of renewable power systems. Nat. Commun. 2018, 9, 2633. [Google Scholar] [CrossRef]
- Li, J.; Yuan, J.; Yue, X. Optimizing multi-objective hybrid energy systems with pumped hydro storage for enhanced stability and efficiency in renewable energy integration. Eng. Sci. Technol. Int. J. 2025, 69, 102142. [Google Scholar] [CrossRef]
- Fini, M.H.; Golshan, M.E.H. Determining optimal virtual inertia and frequency control parameters to preserve the frequency stability in islanded microgrids with high penetration of renewables. Electr. Power Syst. Res. 2018, 154, 13–22. [Google Scholar] [CrossRef]
- Jalilian, M.; Rastgou, A.; Kharrati, S.; Hosseini-Hemati, S. Load frequency control resilience of hybrid power system with renewable energy sources and superconducting magnetic energy storage using FO-Fuzzy-PID controller. Results Eng. 2025, 27, 105961. [Google Scholar] [CrossRef]
- Hassan, A.; Aly, M.M.; Selim, A.; Elmelegi, A.; Aldhaibani, A.O.; Mohamed, E.A. Optimal cascade 2DOF fractional order master-slave controller design for LFC of hybrid microgrid systems with EV charging technology. Results Eng. 2025, 25, 103647. [Google Scholar] [CrossRef]
- Mustafa, G.I.Y.; Masum, M.D.; Siam, M.D. A new model-free control for load frequency control of interconnected power systems based on nonlinear disturbance observer. Energy Rep. 2024, 12, 4998–5008. [Google Scholar] [CrossRef]
- Oliva, H.S.; Bahamonde, D.C. Trade-off between frequency stability and renewable generation—Studying virtual inertia from solar PV and operating stability constraints. Renew. Energy 2024, 232, 121075. [Google Scholar]
- Zhang, H.; Yu, S.; Zhang, X.; Gao, Z. Fast power correction based transient frequency response strategy for energy storage system in low-inertia power systems. J. Energy Storage 2024, 97, 112955. [Google Scholar] [CrossRef]
- Mahmoud, K.; Divshali, P.H.; Peltoniemi, P.; Lehtonen, M. Promising Grid-Forming VSC Control Schemes Toward Sustainable Power Systems: Comprehensive Review and Perspectives. IEEE Access 2022, 10, 130024–130039. [Google Scholar] [CrossRef]
- Mandal, R.; Chatterjee, K. Virtual inertia emulation and RoCoF control of a microgrid with high renewable power penetration. Electr. Power Syst. Res. 2021, 194, 107093. [Google Scholar] [CrossRef]
- Saxena, P.; Singh, N.; Pandey, A.K. Enhancing the dynamic performance of microgrid using derivative controlled solar and energy storage based virtual inertia system. J. Energy Storage 2020, 31, 101613. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Gao, M.; Zhang, D.; Liu, Y.; Tan, Z.; Zhu, J. Cost-based siting and sizing of energy stations and pipeline networks in integrated energy system. Energy Convers. Manag. 2021, 235, 113958. [Google Scholar] [CrossRef]
- Zhong, Q.-C.; Phi-Long, N.; Ma, Z.; Sheng, W. Self-Synchronized Synchronverters: Inverters Without a Dedicated Synchronization Unit. IEEE Trans. Power Electron. 2014, 29, 617–630. [Google Scholar] [CrossRef]
- Singh, K. Zaheeruddin, Enhancement of frequency regulation in tidal turbine power plant using virtual inertia from capacitive energy storage system. J. Energy Storage 2021, 35, 102332. [Google Scholar] [CrossRef]
- Liu, W.; Zheng, Y.; Lv, Y.; Geng, D.; Chen, Q. An instant inertia estimated and operation burden considered frequency regulation method for low inertia power systems. ISA Trans. 2023, 143, 458–476. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zheng, Y.; Zhou, X.; Lv, Y.; Chen, Q. Enhanced frequency regulation in pumped hydro storage integrated power systems: An innovative modeling method and GPC-PI control strategy. J. Energy Storage 2024, 103, 114251. [Google Scholar] [CrossRef]
- Vasudevan, K.R.; Ramachandaramurthy, V.K.; Thanikanti, S.B.; Pouryekta, A. Synchronverter: A Comprehensive Review of Modifications, Stability Assessment, Applications and Future Perspectives. IEEE Access 2020, 8, 131565–131589. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Y.; Guerrero, J.M.; Vasquez, J.C. A comprehensive overview of framework for developing sustainable energy internet: From things-based energy network to services-based management system. Renew. Sust. Energ. Rev. 2021, 150, 111409. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Zheng, Y.; Zhang, Z.; Li, Z.; Li, J.; Wang, J.; Li, G.; He, J. Dual-Mode Laguerre MPC and Its Application in Inertia-Frequency Regulation of Power Systems. Energies 2025, 18, 4311. https://doi.org/10.3390/en18164311
Liu W, Zheng Y, Zhang Z, Li Z, Li J, Wang J, Li G, He J. Dual-Mode Laguerre MPC and Its Application in Inertia-Frequency Regulation of Power Systems. Energies. 2025; 18(16):4311. https://doi.org/10.3390/en18164311
Chicago/Turabian StyleLiu, Wanying, Yang Zheng, Zhi Zhang, Zifei Li, Jianwei Li, Junqing Wang, Guang Li, and Jia He. 2025. "Dual-Mode Laguerre MPC and Its Application in Inertia-Frequency Regulation of Power Systems" Energies 18, no. 16: 4311. https://doi.org/10.3390/en18164311
APA StyleLiu, W., Zheng, Y., Zhang, Z., Li, Z., Li, J., Wang, J., Li, G., & He, J. (2025). Dual-Mode Laguerre MPC and Its Application in Inertia-Frequency Regulation of Power Systems. Energies, 18(16), 4311. https://doi.org/10.3390/en18164311