Assessing the Heat Transfer Modeling Capabilities of CFD Software for Involute-Shaped Plate Research Reactors
Abstract
1. Introduction
Parameters | HFIR [6] | RHF [7] | FRM II [8] |
---|---|---|---|
Thermal power (MW) | 85 | 58 | 20 |
Coolant type | H2O | D2O | H2O |
Average coolant velocity (m/s) | 15.5 | 17 | 15.9 |
Inlet/outlet bulk coolant temperature (°C) | 49/69 | 30/50 | 37/53 |
Inlet/outlet pressure (bar) | 33.3/25.72 | 14/4 | 8.8/2.3 |
Reynolds number range (within channel) | 70–95k | 50–125k | 100–210k |
Prandtl number range (within channel) | 2.5–3.6 | 2.9–6.8 | 2.8–4.6 |
Peak heat flux (W/cm2) | <400 | 340 | 389 |
2. Generalized Heat Transfer Modeling
2.1. Experimental Results Used for Comparison
2.2. Generalized Model Description
2.3. Results from the Generalized Model Parameter Study
2.3.1. Comparison with Sieder–Tate Correlation
2.3.2. Comparison with Experimental Data
3. Explicit Modeling of Gambill and Bundy Test #7
3.1. Test #7 Model Description
3.2. Results from the Simulations of Test #7
4. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheverton, R.; Sims, T. HFIR Core Nuclear Design; ORNL-4621; Oak Ridge National Laboratory (ORNL): Oak Ridge, TN, USA, 1971. [Google Scholar]
- Calzavara, Y.; Fuard, S.; Bergeron, A. Evaluation of Measurements Performed on the French High Flux Reactor (RHF), Revision 2; RHF-FUND-RESR-001 CRIT; Institut Laue-Langevin: Grenoble, France; Argonne National Laboratory: Lemont, IL, USA, 2011. [Google Scholar]
- Reiter, C.; Bergeron, A.; Bonete-Wiese, D.; Kirst, M.; Mercz, J.; Schönecker, R.; Shehu, K.; Ozar, B.; Puig, F.; Licht, J.; et al. A Low-Enriched Uranium (LEU) option for the conversion of FRM II. Ann. Nucl. Energy 2023, 183, 3. [Google Scholar] [CrossRef]
- Hilvety, N.; Chapman, T. HFIR Fuel Element Steady State Heat Transfer Analysis; ORNL-TM-1903; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1967. [Google Scholar]
- Bojanowski, C.; Bergeron, A.; Licht, J. Involute Working Group—Validation of CFD Turbulence Models for Steady-State Safety Analysis; ANL/RTR/TM-19/5; Argonne National Laboratory: Lemont, IL, USA, 2020. [Google Scholar]
- Martin Marietta Energy Systems, Inc. Summary of HFIR Design Parameters For 85 MW Operation; ORNL/RRD/INT-55; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1989. [Google Scholar]
- Thomas, F.; Calzavara, Y.; Guyon, H.; Tentner, A.; Bergeron, A. Thermo-Hydraulique d’une Lame RHF; Rapport RHF n414; Institut Laue Langevin: Grenoble, France, 2012. [Google Scholar]
- Gysler; Sperber; Ehrich. Thermohydraulische Kernauslegung 3B 0320.0007; Bericht Nr. A1C-1301735-1; Siemens AG—Bereich Energieerzeugung (KWU): Erlangen, Germany, 1996. [Google Scholar]
- Popov, E.L.; Mecham, N.J.; Bolotnov, I.A. Direct Numerical Simulation of Involute Channel Turbulence. ASME J. Fluids Eng. 2024, 146, 081301. [Google Scholar] [CrossRef]
- Travis, A.R.; Ekici, K.; Freels, J.D. Simulating High Flux Isotope Reactor Core Thermal-Hydraulics via Interdimensional Model Coupling; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2014. [Google Scholar]
- Bojanowski, C.; Bergeron, A.; Sitek, M.; Licht, J. Involute Working Group—Validation of CFD Turbulence Models for Steady-State Safety Analysis of Corner Geometry; ANL/RTR/TM-20/3; Argonne National Laboratory: Lemont, IL, USA, 2021. [Google Scholar]
- Shehu, K.; Bojanowski, C.; Bergeron, A.; Petry, W.; Reiter, C. First Steps to Coupled Hydraulic and Mechanical Calculations within a Parameter Study to Define Possible Core Designs for the Conversion of FRMII. EPJ Web Conf. 2021, 247, 08011. [Google Scholar] [CrossRef]
- Breitkreutz, H. Coupled Neutronics and Thermal Hydraulics of High Density Cores for FRM II; Technical University of Munich: München, Germany, 2011. [Google Scholar]
- Kim, J.; Moin, P. Transport of Passive Scalars in Turbulent Channel Flow. In NASA Technical Memorandum 8946; National Aeronautics and Space Administration (NASA): Washington, DC, USA, 1987. [Google Scholar]
- Kawamura, H.; Abe, H.; Matsuo, Y. DNS of turbulent heat transfer in channel flow with respect to Reynolds and Prandtl number effcts. Int. J. Heat Fluid Flow 1999, 20, 196–207. [Google Scholar] [CrossRef]
- Abe, H.; Antonia, R.A. Relationship between the heat transfer law and the scalar dissipation function in a turbulent channel flow. J. Fluid Mech. 2017, 830, 300–325. [Google Scholar] [CrossRef]
- Sergio, P.; Modesti, D. Direct numerical simulation of one-sided forced thermal convection in plane channels. J. Fluid Mech. 2023, 957, 1. [Google Scholar]
- Kaller, T.; Pasquariello, V.; Hickel, S.; Adams, N.A. Turbulent flow through a high aspect ratio cooling duct with asym-metric wall heating. J. Fluid Mech. 2019, 860, 258–299. [Google Scholar] [CrossRef]
- Mollik, T.; Roy, B.; Saha, S. Turbulence modeling of channel flow and heat transfer: A comparison with DNS data. Procedia Eng. 2017, 194, 450–456. [Google Scholar] [CrossRef]
- Liu, L.; Ahmed, U.; Chakraborty, N. A Comprehensive Evaluation of Turbulence Models for Predicting Heat Transfer in Turbulent Channel Flow across Various Prandtl Number Regimes. Fluids 2024, 9, 42. [Google Scholar] [CrossRef]
- Siemens Digital Industries Software. Simcenter STAR-CCM+ Documentation, Version 2021.2; Siemens Digital Industries Software: Plano, TX, USA, 2021.
- ANSYS, Inc. ANSYS CFX-Solver Theory Guide; ANSYS, Inc.: Canonsburg, PA, USA, 2022. [Google Scholar]
- COMSOL AB. COMSOL Multiphysics® User’s Manual, version 5.6; COMSOL AB: Stockholm, Sweden, 2020.
- Gambill, W.; Bundy, R. HFIR Heat-Transfer Studies of Turbulent Water Flow in Thin Rectangular Channels; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1961. [Google Scholar]
- Griess, J.C.; Savage, H.C.; Mauney, T.H.; English, J.L. Effect of Heat Flux on the Corrosion of Aluminum by Water. In Part I. Experimental Equipment and Preliminary Test Results; ORNL-2939; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1960. [Google Scholar]
- Sieder, E.; Tate, G. Heat Transfer and Pressure Drop of Liquids in Tubes. Ind. Eng. Chem. 1936, 28, 1429–1435. [Google Scholar] [CrossRef]
- Incropera, F.P.; DeWitt, D.P. Fundamentals of Heat and Mass Transfer; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Sudo, Y.; Miyata, K.; Ikawa, H.; Ohkawara, M.; Kaminaga, M. Experimental Study of Differences in Single-Phase Forced-Convection Heat Transfer Characteristics between Upflow and Downflow for Narrow Rectangular Channel. J. Nucl. Sci. Technol. 1985, 22, 202–212. [Google Scholar] [CrossRef]
- Jo, D.; Altamimi, R.; Al-Yahia, O. Experimental investigation of convective heat transfer in a narrow rectangular channel for upward and downward flows. Nucl. Eng. Technol. 2014, 46, 195–206. [Google Scholar] [CrossRef]
- McAdams, W.H. Heat Transmission, 2nd ed.; McGraw-Hill: New York, NY, USA, 1942. [Google Scholar]
- Alyan, A.; El-Koliel, M.S. Power upgrading of WWR-S research reactor using plate-type fuel elements part I: Steady-state thermal-hydraulic analysis (forced convection cooling mode). Nucl. Eng. Technol. 2020, 52, 1417–1428. [Google Scholar] [CrossRef]
- Menter, F. Two-equation eddy-viscosity turbulence modeling for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
- Shih, T.; Liou, W.; Shabbir, A.; Yang, Z.; Zhu, J. A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows—Model Development and Validation. Comput. Fluids 1995, 24, 227–238. [Google Scholar] [CrossRef]
- Wilcox, D. Turbulence Modeling for CFD; DCW Industries, Inc.: La Canada, CA, USA, 1998. [Google Scholar]
- Abe, K.; Kondoh, T.; Nagano, Y. A New Turbulence Model for Predicting Fluid Flow and Heat Transfer in Separating and Reattaching Flows—I. Flow Field Calculations. Int. J. Heat Mass Transf. 1994, 37, 139–151. [Google Scholar] [CrossRef]
- Kader, A. Temperature and concentration profiles in fully turbulent boundary layers. Int. J. Heat Mass Transf. 1981, 24, 1541–1544. [Google Scholar] [CrossRef]
- COMSOL AB. Heat Transfer Module. User’s Guide; COMSOL Inc.: Stockholm, Sweden, 2020. [Google Scholar]
- Lacasse, D.; Turgeon, E.; Pelletier, D. On the judicious use of the k–ε model, wall functions and adaptivity. Int. J. Therm. Sci. 2004, 43, 925–938. [Google Scholar] [CrossRef]
- The International Association for the Properties of Water and Steam (IAPWS). Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. 2007. Available online: https://www.iapws.org (accessed on 30 May 2024).
- Romera, J. IAPWS Documentation. 2017. Available online: https://iapws.readthedocs.io/en/latest/ (accessed on 30 May 2024).
- Bergles, A.; Rohsenow, W. The determination of Forced Convection Surface Boiling Heat Transfer. J. Heat Transf. 1964, 86, 365–372. [Google Scholar] [CrossRef]
- Kakac, S.; Shah, R.; Aung, W. Handbook of Single-Phase Convective Heat Transfer; Wiley New York: New York, NY, USA, 1987. [Google Scholar]
- COMSOL, AB. CFD Module User’s Guide, COMSOL Multiphysics®, Version 5.6; CFD Module User’s Guide: Stockholm, Sweden, 2020. [Google Scholar]
- Anderson, K.; Weritz, J.; Kaufman, G. ASM Handbook, Volume 2B, Properties and Selection of Aluminum Alloys; ASM International: Materials Park, OH, USA, 2019. [Google Scholar]
- NBSIR84-3007; Thermal Conductivity of Aluminum, Copper, Iron, and Tungsten for Temperature from 1K to the Melting Point. National Bureau of Standards: Boulder, CO, USA, 1984.
Quantity | Unit | Values |
---|---|---|
Independent variables | ||
Hydraulic diameter | m | 0.00254, 0.00376, 0.0044 |
Bulk coolant velocity | m/s | 5, 10, 18 |
Bulk coolant temperature | °C | 10, 30, 50, 70, 90, 110 |
Pressure | MPa | 0.4, 2.0, 4.0 |
ONBR | - | 1.05, 1.2, 2.0, 5.0 |
Dependent variables | ||
Range of resultant heat fluxes | W/cm2 | 26–1700 |
Range of Re | - | 10,000–300,000 |
- | 1.6–10 |
Agreement Within ±10% | Agreement Within ±20% | |
---|---|---|
SST, low near-wall mesh | 51% | 72% |
SST, high near-wall mesh | 94% | 100% |
, low near-wall mesh | 71% | 94% |
, high near-wall mesh | 91% | 100% |
Agreement Within ±10% | Agreement Within ±20% | |
---|---|---|
SST, low near-wall mesh | 51% | 71% |
SST, high near-wall mesh | 94% | 100% |
, low near-wall mesh | 90% | 100% |
, high near-wall mesh | 93% | 99% |
Agreement Within ±10% | Agreement Within ±20% | |
---|---|---|
SST, low near-wall mesh | 34% | 61% |
SST, high near-wall mesh | 89% | 100% |
, low near-wall mesh | 88% | 100% |
, high near-wall mesh | 87% | 99% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bojanowski, C.; Schönecker, R.; Borowiec, K.; Shehu, K.; Mercz, J.; Thomas, F.; Calzavara, Y.; Bergeron, A.; Jain, P.; Reiter, C.; et al. Assessing the Heat Transfer Modeling Capabilities of CFD Software for Involute-Shaped Plate Research Reactors. Energies 2025, 18, 3692. https://doi.org/10.3390/en18143692
Bojanowski C, Schönecker R, Borowiec K, Shehu K, Mercz J, Thomas F, Calzavara Y, Bergeron A, Jain P, Reiter C, et al. Assessing the Heat Transfer Modeling Capabilities of CFD Software for Involute-Shaped Plate Research Reactors. Energies. 2025; 18(14):3692. https://doi.org/10.3390/en18143692
Chicago/Turabian StyleBojanowski, Cezary, Ronja Schönecker, Katarzyna Borowiec, Kaltrina Shehu, Julius Mercz, Frederic Thomas, Yoann Calzavara, Aurelien Bergeron, Prashant Jain, Christian Reiter, and et al. 2025. "Assessing the Heat Transfer Modeling Capabilities of CFD Software for Involute-Shaped Plate Research Reactors" Energies 18, no. 14: 3692. https://doi.org/10.3390/en18143692
APA StyleBojanowski, C., Schönecker, R., Borowiec, K., Shehu, K., Mercz, J., Thomas, F., Calzavara, Y., Bergeron, A., Jain, P., Reiter, C., & Licht, J. (2025). Assessing the Heat Transfer Modeling Capabilities of CFD Software for Involute-Shaped Plate Research Reactors. Energies, 18(14), 3692. https://doi.org/10.3390/en18143692