Enhanced Torrefied Oil-Palm Biomass as an Alternative Bio-Circular Solid Fuel: Innovative Modeling of Optimal Conditions and Ecoefficiency Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of High Energy-Density Biomass
2.3. Characterization
2.3.1. Thermogravimetric Analysis (TGA)
2.3.2. Lignocellulose Analysis
2.3.3. Fourier Transform Infrared (FTIR) Analysis
2.3.4. Scanning Electron Microscopy (SEM)/EDX
2.3.5. Production Yield Analysis
2.3.6. Proximate Analysis
2.3.7. High Heating Value (HHV)
2.4. Ecoefficiency Analysis
2.5. Experimental Design
3. Results
3.1. Preparation of Torrefied Biomass
3.2. Structure Analysis
3.2.1. Thermogravimetric Analysis (TGA)
3.2.2. Lignocellulose Content Analysis
3.2.3. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
3.2.4. SEM and EDX Analysis
3.3. Characterization Analysis
3.3.1. Production Yield Analysis
3.3.2. Proximate Analysis
3.3.3. High Heating Value (HHV) Analysis
3.4. Design Expert Program
3.4.1. Experimental Design and Statistical Analysis
3.4.2. Optimal Conditions
3.4.3. Confirmation of Conditional Optimizations
3.5. Ecoefficiency Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, F.; Lu, J.; Chen, L. When green recovery fails to consider coal pushback: Exploring global coal rebounds, production, and policy retrenchment post COVID-19. Energy Res. Soc. Sci. 2023, 101, 103142. [Google Scholar] [CrossRef]
- Mišík, M.; Nosko, A. Post-pandemic lessons for EU energy and climate policy after the Russian invasion of Ukraine: Introduction to a special issue on EU green recovery in the post-COVID-19 period. Energy Policy 2023, 177, 113546. [Google Scholar] [CrossRef]
- Liu, Z.; Deng, Z.; Davis, S.J.; Ciais, P. Global carbon emissions in 2023. Nat. Rev. Earth Environ. 2024, 5, 253–254. [Google Scholar] [CrossRef]
- Pattanapongchai, A.; Limmeechokchai, B. CO2 mitigation model of future power plants with integrated carbon capture and storage in Thailand. Int. J. Sustain. Energy 2011, 30, S155–S174. [Google Scholar] [CrossRef]
- Chen, X.; Mauzerall, D.L. The Expanding Coal Power Fleet in Southeast Asia: Implications for Future CO2 Emissions and Electricity Generation. Earth’s Futur. 2021, 9, e2021EF002257. [Google Scholar] [CrossRef]
- Simshauser, P. Fuel Poverty and the 2022 Energy Crisis. Aust. Econ. Rev. 2022, 55, 503–514. [Google Scholar] [CrossRef]
- Mao, Z.; Zhang, L.; Zhu, X.; Zheng, C. Experimental Study of Coal MILD Combustion at a Pilot-Scale Furnace. In Clean Coal Technology and Sustainable Development; Springer: Singapore, 2016; pp. 173–181. [Google Scholar] [CrossRef]
- Gasparotto, J.; Martinello, K.D.B. Coal as an energy source and its impacts on human health. Energy Geosci. 2020, 2, 113–120. [Google Scholar] [CrossRef]
- Cahyanti, M.N.; Doddapaneni, T.R.K.C.; Kikas, T. Biomass torrefaction: An overview on process parameters, economic and environmental aspects and recent advancements. Bioresour. Technol. 2020, 301, 122737. [Google Scholar] [CrossRef]
- Maluin, F.N.; Hussein, M.Z.; Idris, A.S. An Overview of the Oil Palm Industry: Challenges and Some Emerging Opportunities for Nanotechnology Development. Agronomy 2020, 10, 356. [Google Scholar] [CrossRef]
- Mukherjee, I.; Sovacool, B.K. Palm oil-based biofuels and sustainability in southeast Asia: A review of Indonesia, Malaysia, and Thailand. Renew. Sustain. Energy Rev. 2014, 37, 1–12. [Google Scholar] [CrossRef]
- Nupueng, S.; Oosterveer, P.; Mol, A.P.J. Governing sustainability in the Thai palm oil-supply chain: The role of private actors. Sustain. Sci. Pr. Policy 2022, 18, 37–54. [Google Scholar] [CrossRef]
- E Anyaoha, K.; Sakrabani, R.; Patchigolla, K.; Mouazen, A.M. Evaluating oil palm fresh fruit bunch processing in Nigeria. Waste Manag. Res. J. Sustain. Circ. Econ. 2018, 36, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Poh, P.E.; Wu, T.Y.; Lam, W.H.; Poon, W.C.; Lim, C.S. Waste Management in the Palm Oil Industry; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Supriatna, J.; Setiawati, M.R.; Sudirja, R.; Suherman, C.; Bonneau, X. Composting for a More Sustainable Palm Oil Waste Management: A Systematic Literature Review. Sci. World J. 2022, 2022, 5073059. [Google Scholar] [CrossRef] [PubMed]
- Nunes, L.; Matias, J.; Catalão, J. A review on torrefied biomass pellets as a sustainable alternative to coal in power generation. Renew. Sustain. Energy Rev. 2014, 40, 153–160. [Google Scholar] [CrossRef]
- Williams, C.L.; Emerson, R.M.; Tumuluru, J.S. Biomass Compositional Analysis for Conversion to Renewable Fuels and Chem-icals. In Biomass Volume Estimation and Valorization for Energy; InTech: Houston, TX, USA, 2017. [Google Scholar] [CrossRef]
- Tumuluru, J.S.; Ghiasi, B.; Soelberg, N.R.; Sokhansanj, S. Biomass Torrefaction Process, Product Properties, Reactor Types, and Moving Bed Reactor Design Concepts. Front. Energy Res. 2021, 9, 728140. [Google Scholar] [CrossRef]
- Kota, K.B.; Shenbagaraj, S.; Sharma, P.K.; Sharma, A.K.; Ghodke, P.K.; Chen, W.-H. Biomass torrefaction: An overview of process and technology assessment based on global readiness level. Fuel 2022, 324, 124663. [Google Scholar] [CrossRef]
- Thengane, S.K.; Kung, K.S.; Gomez-Barea, A.; Ghoniem, A.F. Advances in biomass torrefaction: Parameters, models, reactors, applications, deployment, and market. Prog. Energy Combust. Sci. 2022, 93, 101040. [Google Scholar] [CrossRef]
- ISO 565:1990; Test Sieves. International Organization for Standardization: Geneva, Switzerland, 1990. Available online: https://www.iso.org/obp/ui/#iso:std:iso:565:ed-3:v1:en (accessed on 20 April 2024).
- Li, S.; Xu, S.; Liu, S.; Yang, C.; Lu, Q. Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Process. Technol. 2004, 85, 1201–1211. [Google Scholar] [CrossRef]
- Niu, Y.; Lv, Y.; Lei, Y.; Liu, S.; Liang, Y.; Wang, D.; Hui, S. Biomass torrefaction: Properties, applications, challenges, and economy. Renew. Sustain. Energy Rev. 2019, 115, 109395. [Google Scholar] [CrossRef]
- Liu, K.; Catchmark, J.M. Bacterial cellulose/hyaluronic acid nanocomposites production through co-culturing Gluconacetobacter hansenii and Lactococcus lactis under different initial pH values of fermentation media. Cellulose 2020, 27, 2529–2540. [Google Scholar] [CrossRef]
- ISO 14045:2012; Environmental Management. International Organization for Standardization: Geneva, Switzerland, 2012. Available online: https://www.iso.org/obp/ui/#iso:std:iso:14045:ed-1:v2:en (accessed on 20 April 2024).
- Changwichan, K.; Silalertruksa, T.; Gheewala, S.H. Eco-Efficiency Assessment of Bioplastics Production Systems and End-of-Life Options. Sustainability 2018, 10, 952. [Google Scholar] [CrossRef]
- Heilala, J.; Ruusu, R.; Montonen, J.; Vatanen, S.; Kavka, C.; Asnicar, F.; Scholze, S.; Armiojo, A.; Insunza, M. Eco-process Engineering System for Collaborative Product Process System Optimisation. In Proceedings of the IFIP International Conference on Advances in Production Management Systems, Ajaccio, France, 20–24 September 2014; pp. 634–641. [Google Scholar] [CrossRef]
- Yu, K.L.; Lau, B.F.; Show, P.L.; Ong, H.C.; Ling, T.C.; Chen, W.-H.; Ng, E.P.; Chang, J.-S. Recent developments on algal biochar production and characterization. Bioresour. Technol. 2017, 246, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-H.; Kuo, P.-C. Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis. Energy 2011, 36, 6451–6460. [Google Scholar] [CrossRef]
- Zhang, S.; Li, R.; Zhang, Y.; Zhao, M. The effect of solvents on the thermal degradation products of two Amadori derivatives. RSC Adv. 2020, 10, 9309–9317. [Google Scholar] [CrossRef]
- Werner, K.; Pommer, L.; Broström, M. Thermal decomposition of hemicelluloses. J. Anal. Appl. Pyrolysis 2014, 110, 130–137. [Google Scholar] [CrossRef]
- Patai, S.; Halpern, Y. Pyrolytic Reaction of Carbohydrates. Part IX the Effect of Additives on the Thermal Behavior of Cellulose Samples of Different Crystallinity. Isr. J. Chem. 1970, 8, 655–662. [Google Scholar] [CrossRef]
- Rao, J.; Lv, Z.; Chen, G.; Peng, F. Hemicellulose: Structure, chemical modification, and application. Prog. Polym. Sci. 2023, 140, 101675. [Google Scholar] [CrossRef]
- Gellerstedt, G.; Henriksson, G. Lignins: Major Sources, Structure and Properties. In Monomers, Polymers and Composites from Renewable Resources; Elsevier: Amsterdam, The Netherlands, 2008; pp. 201–224. [Google Scholar] [CrossRef]
- Senneca, O.; Cerciello, F.; Russo, C.; Wütscher, A.; Muhler, M.; Apicella, B. Thermal treatment of lignin, cellulose and hemicellulose in nitrogen and carbon dioxide. Fuel 2020, 271, 117656. [Google Scholar] [CrossRef]
- Sarker, T.R.; Nanda, S.; Dalai, A.K.; Meda, V. A Review of Torrefaction Technology for Upgrading Lignocellulosic Biomass to Solid Biofuels. BioEnergy Res. 2021, 14, 645–669. [Google Scholar] [CrossRef]
- Ong, H.C.; Yu, K.L.; Chen, W.-H.; Pillejera, M.K.; Bi, X.; Tran, K.-Q.; Pétrissans, A.; Pétrissans, M. Variation of lignocellulosic biomass structure from torrefaction: A critical review. Renew. Sustain. Energy Rev. 2021, 152, 111698. [Google Scholar] [CrossRef]
- Tumuluru, J.S. Effect of Deep Drying and Torrefaction Temperature on Proximate, Ultimate Composition, and Heating Value of 2-mm Lodgepole Pine (Pinus contorta) Grind. Bioengineering 2016, 3, 16. [Google Scholar] [CrossRef] [PubMed]
- Azargohar, R.; Nanda, S.; Kang, K.; Bond, T.; Karunakaran, C.; Dalai, A.K.; Kozinski, J.A. Effects of bio-additives on the physicochemical properties and mechanical behavior of canola hull fuel pellets. Renew. Energy 2018, 132, 296–307. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Chen, W.-H.; Lin, B.-J.; Chang, J.-S.; Ong, H.C. Impact of torrefaction on the composition, structure and reactivity of a microalga residue. Appl. Energy 2016, 181, 110–119. [Google Scholar] [CrossRef]
- Okolie, J.A.; Nanda, S.; Dalai, A.K.; Kozinski, J.A. Chemistry and Specialty Industrial Applications of Lignocellulosic Biomass. Waste Biomass- Valorization 2020, 12, 2145–2169. [Google Scholar] [CrossRef]
- Basu, P. Torrefaction, in: Biomass Gasification, Pyrolysis and Torrefaction; Elsevier: Amsterdam, The Netherlands, 2013; pp. 87–145. [Google Scholar] [CrossRef]
- Nam, H.; Capareda, S. Experimental investigation of torrefaction of two agricultural wastes of different composition using RSM (response surface methodology). Energy 2015, 91, 507–516. [Google Scholar] [CrossRef]
- Waheed, A.; Naqvi, S.R.; Ali, I. Co-Torrefaction Progress of Biomass Residue/Waste Obtained for High-Value Bio-Solid Products. Energies 2022, 15, 8297. [Google Scholar] [CrossRef]
- Lau, H.S.; Ng, H.K.; Gan, S.; Jourabchi, S.A. Torrefaction of oil palm fronds for co-firing in coal power plants. Energy Procedia 2018, 144, 75–81. [Google Scholar] [CrossRef]
- Chen, W.-H.; Kuo, P.-C. A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy 2010, 35, 2580–2586. [Google Scholar] [CrossRef]
- Ivanovski, M.; Goričanec, D.; Urbancl, D. The Evaluation of Torrefaction Efficiency for Lignocellulosic Materials Combined with Mixed Solid Wastes. Energies 2023, 16, 3694. [Google Scholar] [CrossRef]
- Mohammad, I.N.; Ongkudon, C.M.; Misson, M. Physicochemical Properties and Lignin Degradation of Thermal-Pretreated Oil Palm Empty Fruit Bunch. Energies 2020, 13, 5966. [Google Scholar] [CrossRef]
- Premchand, P.; Demichelis, F.; Chiaramonti, D.; Bensaid, S.; Fino, D. Study on the effects of carbon dioxide atmosphere on the production of biochar derived from slow pyrolysis of organic agro-urban waste. Waste Manag. 2023, 172, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Wolela, A. Fossil fuel energy resources of Ethiopia: Coal deposits. Int. J. Coal Geol. 2007, 72, 293–314. [Google Scholar] [CrossRef]
Run | A: Temp (°C) | B: Time (min) | C: Size (mm) | Empty Palm Fruit Bunch | Palm Fiber | Palm Kernel Shell | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HHV (kcal/kg) | Mass Yield (%) | Fixed Carbon (%) | HHV (kcal/kg) | Mass Yield (%) | Fixed Carbon (%) | HHV (kcal/kg) | Mass Yield (%) | Fixed Carbon (%) | ||||
Raw1 | - | - | 0.60 | 3997 ± 15 | - | 9.29 ± 1.22 | 4445 ± 27 | - | 11.13 ± 0.52 | 4364 ± 36 | - | 14.58 ± 0.52 |
Raw2 | - | - | 0.85 | 3969 ± 43 | - | 10.1 ± 0.48 | 4423 ± 49 | - | 10.88 ± 0.48 | 4345 ± 55 | - | 14.39 ± 0.36 |
Raw3 | - | - | 1.00 | 3950 ± 62 | - | 12.25 ± 0.42 | 4416 ± 56 | - | 11.39 ± 0.39 | 4342 ± 58 | - | 14.5 ± 0.42 |
1 | 200 | 30 | 0.85 | 4209 ± 16 | 97.12 ± 0.48 | 15.96 ± 0.23 | 4588 ± 20 | 97.36 ± 0.21 | 14.76 ± 0.22 | 4395 ± 21 | 99.13 ± 0.17 | 16.98 ± 0.43 |
2 | 200 | 75 | 0.60 | 4269 ± 20 | 93.42 ± 0.33 | 16.61 ± 0.15 | 4752 ± 21 | 95.32 ± 0.33 | 15.69 ± 0.23 | 4497 ± 17 | 97.57 ± 0.21 | 17.25 ± 0.32 |
3 | 200 | 75 | 1.00 | 4259 ± 10 | 94.41 ± 0.29 | 16.56 ± 0.16 | 4738 ± 17 | 95.42 ± 0.21 | 15.51 ± 0.19 | 4476 ± 22 | 98.14 ± 0.34 | 17.11 ± 0.29 |
4 | 200 | 120 | 0.85 | 4316 ± 23 | 94.32 ± 0.21 | 17.03 ± 0.10 | 4878 ± 20 | 93.9 ± 0.17 | 15.63 ± 0.16 | 4726 ± 19 | 96.16 ± 0.45 | 18.09 ± 0.22 |
5 | 250 | 30 | 0.60 | 4276 ± 45 | 91.41 ± 0.39 | 16.95 ± 0.13 | 4804 ± 35 | 94.15 ± 0.43 | 15.66 ± 0.11 | 4704 ± 33 | 97.22 ± 0.23 | 17.71 ± 0.19 |
6 | 250 | 30 | 1.00 | 4261 ± 42 | 92.28 ± 0.33 | 16.72 ± 0.16 | 4788 ± 27 | 95.07 ± 0.54 | 15.22 ± 0.14 | 4673 ± 27 | 98.04 ± 0.19 | 17.67 ± 0.13 |
7 | 250 | 75 | 0.85 | 4378 ± 18 | 89.98 ± 0.09 | 17.98 ± 0.06 | 5092 ± 25 | 93.12 ± 0.16 | 19.77 ± 0.15 | 4976 ± 2 | 97.08 ± 0.03 | 19.82 ± 0.09 |
8 | 250 | 75 | 0.85 | 4350 ± 10 | 89.77 ± 0.12 | 17.9 ± 0.14 | 5064 ± 2 | 92.93 ± 0.03 | 19.53 ± 0.09 | 4972 ± 5 | 96.99 ± 0.06 | 19.98 ± 0.07 |
9 | 250 | 75 | 0.85 | 4340 ± 20 | 90.02 ± 0.13 | 18.11 ± 0.07 | 5054 ± 10 | 93.04 ± 0.08 | 19.66 ± 0.04 | 4980 ± 2 | 97.14 ± 0.09 | 19.91 ± 0.00 |
10 | 250 | 75 | 0.85 | 4364 ± 5 | 89.89 ± 0.00 | 18.06 ± 0.02 | 5076 ± 10 | 92.89 ± 0.07 | 19.62 ± 0.00 | 4984 ± 6 | 97.07 ± 0.02 | 19.88 ± 0.03 |
11 | 250 | 75 | 0.85 | 4371 ± 11 | 89.80 ± 0.09 | 18.17 ± 0.06 | 5045 ± 21 | 92.81 ± 0.15 | 19.50 ± 0.12 | 4978 ± 0 | 96.97 ± 0.08 | 19.96 ± 0.05 |
12 | 250 | 120 | 0.60 | 4740 ± 19 | 84.23 ± 0.19 | 19.22 ± 0.17 | 5319 ± 15 | 88.99 ± 0.23 | 20.96 ± 0.19 | 5319 ± 19 | 95.85 ± 0.14 | 20.65 ± 0.14 |
13 | 250 | 120 | 1.00 | 4733 ± 16 | 86.40 ± 0.23 | 18.93 ± 0.15 | 5302 ± 13 | 89.47 ± 0.31 | 19.51 ± 0.21 | 5307 ± 16 | 96.13 ± 0.26 | 20.2 ± 0.17 |
14 | 275 | 30 | 0.60 | 4714 ± 23 | 87.05 ± 0.23 | 18.37 ± 0.21 | 5264 ± 20 | 87.02 ± 0.28 | 19.45 ± 0.17 | 5188 ± 21 | 94.241 ± 0.42 | 19.91 ± 0.21 |
15 | 275 | 30 | 1.00 | 4709 ± 23 | 87.94 ± 0.32 | 18.12 ± 0.19 | 5254 ± 19 | 88.12 ± 0.27 | 19.43 ± 0.22 | 5161 ± 17 | 95.12 ± 0.39 | 19.8 ± 0.19 |
16 | 275 | 75 | 0.85 | 4788 ± 21 | 82.03 ± 0.03 | 20.97 ± 0.04 | 5521 ± 5 | 83.84 ± 0.12 | 21.14 ± 0.43 | 5359 ± 4 | 84.45 ± 0.05 | 22.56 ± 0.17 |
17 | 275 | 75 | 0.85 | 4792 ± 16 | 81.87 ± 0.13 | 21.07 ± 0.06 | 5538 ± 16 | 83.97 ± 0.25 | 21.5 ± 0.07 | 5362 ± 7 | 84.39 ± 0.01 | 22.73 ± 0.00 |
18 | 275 | 75 | 0.85 | 4830 ± 21 | 81.90 ± 0.10 | 20.89 ± 0.12 | 5533 ± 11 | 83.04 ± 0.68 | 21.37 ± 0.20 | 5355 ± 0 | 84.44 ± 0.04 | 22.81 ± 0.08 |
19 | 275 | 75 | 0.85 | 4807 ± 5 | 82.13 ± 0.13 | 20.99 ± 0.02 | 5502 ± 20 | 83.9 ± 0.18 | 21.56 ± 0.01 | 5350 ± 5 | 84.33 ± 0.07 | 22.77 ± 0.04 |
20 | 275 | 75 | 0.85 | 4823 ± 15 | 82.10 ± 0.10 | 21.13 ± 0.12 | 5516 ± 5 | 83.87 ± 0.15 | 22.26 ± 0.31 | 5348 ± 7 | 84.4 ± 0.00 | 22.76 ± 0.03 |
21 | 275 | 120 | 0.60 | 5054 ± 10 | 68.28 ± 0.19 | 23.1 ± 0.16 | 5873 ± 10 | 71.97 ± 0.21 | 25.6 ± 0.33 | 5469 ± 10 | 74.08 ± 0.18 | 25.79 ± 0.21 |
22 | 275 | 120 | 1.00 | 5040 ± 13 | 70.7 ± 0.25 | 22.89 ± 0.20 | 5854 ± 17 | 74.23 ± 0.19 | 23.89 ± 0.26 | 5459 ± 15 | 75.18 ± 0.26 | 25.24 ± 0.17 |
23 | 300 | 30 | 0.85 | 5026 ± 10 | 65.28 ± 0.37 | 22.79 ± 0.15 | 5628 ± 23 | 67.2 ± 0.11 | 25.13 ± 0.27 | 5435 ± 20 | 70.51 ± 0.22 | 25.98 ± 0.16 |
24 | 300 | 75 | 0.60 | 5671 ± 10 | 57.43 ± 0.30 | 24.67 ± 0.17 | 5790 ± 19 | 59.75 ± 0.10 | 28.86 ± 0.19 | 5626 ± 17 | 66.12 ± 0.32 | 27.99 ± 0.22 |
25 | 300 | 75 | 1.00 | 5659 ± 14 | 60.05 ± 0.22 | 24.43 ± 0.23 | 5778 ± 15 | 62.2 ± 0.13 | 28.49 ± 0.11 | 5567 ± 25 | 67.68 ± 0.43 | 27.86 ± 0.19 |
26 | 300 | 120 | 0.85 | 5711 ± 19 | 52.89 ± 0.17 | 27.58 ± 0.26 | 6107 ± 16 | 55.26 ± 0.21 | 30.52 ± 0.17 | 5754 ± 20 | 59.87 ± 0.18 | 29.63 ± 0.23 |
27 | 350 | 30 | 0.85 | 5676 ± 35 | 47.89 ± 0.19 | 26.11 ± 0.19 | 6066 ± 35 | 50.26 ± 0.19 | 30.95 ± 0.15 | 5719 ± 45 | 46.18 ± 0.55 | 29.61 ± 0.22 |
28 | 350 | 75 | 0.60 | 5942 ± 29 | 39.63 ± 0.29 | 29.96 ± 0.22 | 6373 ± 10 | 41.01 ± 0.22 | 32.35 ± 0.21 | 6102 ± 15 | 42.99 ± 0.25 | 30.9 ± 0.14 |
29 | 350 | 75 | 1.00 | 5935 ± 33 | 44.33 ± 0.33 | 29.72 ± 0.10 | 6354 ± 19 | 43.22 ± 0.18 | 31.16 ± 0.13 | 6056 ± 45 | 44.33 ± 0.16 | 30.76 ± 0.10 |
30 | 350 | 120 | 0.85 | 6085 ± 20 | 36.52 ± 0.24 | 31.98 ± 0.16 | 6483 ± 27 | 38.25 ± 0.31 | 33.09 ± 0.14 | 6283 ± 36 | 39.05 ± 0.20 | 32.72 ± 0.09 |
Source | HHV | % FC | % Mass Yield | |||||||
---|---|---|---|---|---|---|---|---|---|---|
df | SS | F-Value | p-Value | SS | F-Value | p-Value | SS | F-Value | p-Value | |
Model | 9 | 9.23 × 106 | 22.61 | <0.0001 | 527.22 | 77.33 | <0.0001 | 6.38 × 106 | 68.80 | <0.0001 |
A-Temp | 1 | 7.87 × 106 | 173.52 | <0.0001 | 425.55 | 561.78 | <0.0001 | 5.68 × 106 | 551.71 | <0.0001 |
B-Time | 1 | 7.81 × 105 | 17.21 | 0.00 | 64.88 | 85.64 | <0.0001 | 8.44 × 105 | 81.96 | <0.0001 |
C-Size | 1 | 3.16 × 102 | 0.01 | 0.93 | 0.17 | 0.22 | 0.64 | 3.14 × 103 | 0.31 | 0.59 |
AB | 1 | 1.03 × 105 | 2.28 | 0.15 | 18.83 | 24.86 | <0.0001 | 2.69 × 104 | 2.61 | 0.12 |
AC | 1 | 9.91 × 10−1 | 0.00 | 1.00 | 0.0059 | 0.01 | 0.93 | 3.19 × 102 | 0.03 | 0.86 |
BC | 1 | 2.00 × 10 | 0.00 | 0.99 | 0.00 | 0.00 | 1.00 | 1.62 × 102 | 0.02 | 0.90 |
A2 | 1 | 2.77 × 105 | 6.11 | 0.02 | 24.91 | 32.88 | <0.0001 | 9.03 × 103 | 0.88 | 0.36 |
B2 | 1 | 2.38 × 103 | 0.05 | 0.82 | 3.70 | 4.88 | 0.04 | 8.39 × 103 | 0.81 | 0.38 |
C2 | 1 | 1.36 × 105 | 2.99 | 0.10 | 1.94 | 2.56 | 0.13 | 5.89 × 103 | 0.57 | 0.46 |
Residual | 20 | 9.08 × 105 | 15.15 | 2.06 × 105 | ||||||
Lack of Fit | 11 | 6.40 × 105 | 1.95 | 0.16 | 9.89 | 1.54 | 0.26 | 1.50 × 105 | 2.19 | 0.12 |
Pure Error | 9 | 2.68 × 105 | 5.26 | 5.60 × 104 | ||||||
Cor Total | 29 | 1.01 × 107 | 542.37 | 6.59 × 106 | ||||||
R2 | 9 | 0.91 | 0.97 | 0.97 | ||||||
Adjusted R2 | 1 | 0.87 | 0.96 | 0.95 | ||||||
Predicted R2 | 1 | 0.76 | 0.92 | 0.91 |
Source | HHV | % FC | % Mass Yield | |||||||
---|---|---|---|---|---|---|---|---|---|---|
df | SS | F-Value | p-Value | SS | F-Value | p-Value | SS | F-Value | p-Value | |
Model | 9 | 7.6 × 106 | 44.88 | <0.0001 | 891.10 | 23.91 | <0.0001 | 9749.78 | 30.60 | <0.0001 |
A-Temp | 1 | 6.5 × 106 | 349.42 | <0.0001 | 748.42 | 180.74 | <0.0001 | 7963.06 | 224.94 | <0.0001 |
B-Time | 1 | 1.1 × 106 | 60.26 | <0.0001 | 117.93 | 28.48 | <0.0001 | 712.61 | 20.13 | 0.00 |
C-Size | 1 | 8.0 × 102 | 0.04 | 0.84 | 1.54 | 0.37 | 0.55 | 11.92 | 0.34 | 0.57 |
AB | 1 | 5.2 × 104 | 2.80 | 0.11 | 5.42 | 1.31 | 0.27 | 161.75 | 4.57 | 0.05 |
AC | 1 | 1.2 × 10 | 0.00 | 0.99 | 0.58 | 0.14 | 0.71 | 6.73 | 0.19 | 0.67 |
BC | 1 | 1.3 × 101 | 0.00 | 0.98 | 0.91 | 0.22 | 0.64 | 0.14 | 0.00 | 0.95 |
A2 | 1 | 7.8 × 103 | 0.42 | 0.53 | 14.98 | 3.62 | 0.07 | 624.34 | 17.64 | 0.00 |
B2 | 1 | 9.7 × 103 | 0.52 | 0.48 | 9.95 | 2.40 | 0.14 | 3.70 | 0.10 | 0.75 |
C2 | 1 | 2.0 × 104 | 1.09 | 0.31 | 0.04 | 0.01 | 0.92 | 80.80 | 2.28 | 0.15 |
Residual | 20 | 3.7 × 105 | 82.82 | 708.02 | ||||||
Lack of Fit | 11 | 2.8 × 105 | 2.30 | 0.11 | 58.81 | 2.00 | 0.15 | 519.92 | 2.26 | 0.12 |
Pure Error | 9 | 9.8 × 104 | 24.01 | 188.10 | ||||||
Cor Total | 29 | 7.9 × 106 | 973.92 | 10,458 | ||||||
R2 | 9 | 0.95 | 0.92 | |||||||
Adjusted R2 | 1 | 0.93 | 0.88 | |||||||
Predicted R2 | 1 | 0.86 | 0.74 |
Source | HHV | % FC | % Mass Yield | |||||||
---|---|---|---|---|---|---|---|---|---|---|
df | SS | F-Value | p-Value | SS | F-Value | p-Value | SS | F-Value | p-Value | |
Model | 9 | 6.38 × 106 | 68.80 | <0.0001 | 624.35 | 30.37 | <0.0001 | 9881.98 | 29.860 | <0.0001 |
A-Temp | 1 | 5.68 × 106 | 551.71 | <0.0001 | 536.53 | 234.92 | <0.0001 | 7771.10 | 211.330 | <0.0001 |
B-Time | 1 | 8.44 × 105 | 81.96 | <0.0001 | 71.61 | 31.35 | <0.0001 | 633.90 | 17.240 | 0.00 |
C-Size | 1 | 3.14 × 103 | 0.31 | 0.59 | 0.17 | 0.08 | 0.79 | 3.21 | 0.087 | 0.77 |
AB | 1 | 2.69 × 104 | 2.61 | 0.12 | 10.91 | 4.78 | 0.04 | 192.43 | 5.230 | 0.03 |
AC | 1 | 3.19 × 102 | 0.03 | 0.86 | 0.00 | 0.00 | 0.99 | 0.3292 | 0.009 | 0.93 |
BC | 1 | 1.62 × 102 | 0.02 | 0.90 | 0.09 | 0.04 | 0.84 | 0.0128 | 0.000 | 0.99 |
A2 | 1 | 9.03 × 103 | 0.88 | 0.36 | 11.64 | 5.10 | 0.04 | 965.88 | 26.270 | <0.0001 |
B2 | 1 | 8.39 × 103 | 0.81 | 0.38 | 1.36 | 0.60 | 0.45 | 17.99 | 0.489 | 0.49 |
C2 | 1 | 5.89 × 103 | 0.57 | 0.46 | 0.04 | 0.02 | 0.89 | 24.68 | 0.671 | 0.42 |
Residual | 20 | 2.06 × 105 | 45.68 | 735.43 | ||||||
Lack of Fit | 11 | 1.50 × 105 | 2.19 | 0.12 | 29.89 | 1.55 | 0.26 | 439.43 | 1.210 | 0.39 |
Pure Error | 9 | 5.60 × 104 | 15.79 | 296.00 | ||||||
Cor Total | 29 | 6.59 × 106 | 670.03 | 10,617 | ||||||
R2 | 9 | 0.97 | 0.93 | 0.93 | 0.93 | |||||
Adjusted R2 | 1 | 0.93 | 0.88 | |||||||
Predicted R2 | 1 | 0.86 | 0.74 |
Run | Conditions | Predicted | Experiment | The Ratio between Experimental and Predicted Values | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A: Temp (°C) | B: Time (min) | C: Size (mm) | HHV (kcal/kg) | Mass Yield (%) | FC (%) | HHV (kcal/kg) | Mass Yield (%) | FC (%) | HHV (kcal/kg) | Mass Yield (%) | FC (%) | |
(5a) EFB | ||||||||||||
1 | 350 | 120 | 0.85 | 6257 | 33.59 | 32.65 | 6176 ± 55 | 32.47 ± 0.60 | 29.49 ± 0.30 | 0.99 | 0.99 | 0.90 |
2 | 350 | 75 | 0.6 | 6034 | 39.93 | 30.01 | 5965 ± 40 | 38.02 ± 0.58 | 29.63 ± 0.53 | 0.99 | 0.95 | 0.99 |
3 | 350 | 75 | 1 | 6025 | 42.38 | 29.72 | 5959 ± 40 | 39.81 ± 0.49 | 28.98 ± 0.59 | 0.99 | 0.94 | 0.98 |
4 | 275 | 120 | 0.6 | 5135 | 70.77 | 22.70 | 5080 ± 35 | 69.75 ± 1.10 | 20.89 ± 0.46 | 0.99 | 0.99 | 0.92 |
5 | 275 | 30 | 0.6 | 4658 | 85.66 | 18.37 | 4690 ± 25 | 79.78 ± 1.32 | 18.48 ± 0.35 | 1.00 | 0.93 | 1.00 |
6 | 200 | 120 | 0.85 | 4199 | 97.28 | 15.84 | 4185 ± 30 | 92.3 ± 1.22 | 15.93 ± 0.23 | 1.00 | 0.95 | 1.00 |
(5b) PF | ||||||||||||
1 | 350 | 120 | 0.85 | 6638 | 31.17 | 35.18 | 6437 ± 55 | 31.11 ± 0.30 | 34.76 ± 0.48 | 0.97 | 1.00 | 0.99 |
2 | 350 | 75 | 0.6 | 6351 | 37.26 | 33.31 | 6278 ± 30 | 38.16 ± 0.29 | 32.14 ± 0.27 | 0.99 | 1.00 | 0.96 |
3 | 350 | 75 | 1 | 6335 | 41.52 | 31.93 | 6239 ± 15 | 42.33 ± 0.48 | 30.89 ± 0.32 | 0.98 | 1.00 | 0.97 |
4 | 275 | 120 | 0.6 | 5751 | 71.06 | 24.68 | 5723 ± 30 | 69.87 ± 0.52 | 24.78 ± 0.16 | 1.00 | 0.98 | 1.00 |
5 | 275 | 30 | 0.6 | 5177 | 85.68 | 18.16 | 5162 ± 25 | 82.16 ± 1.19 | 17.66 ± 0.29 | 1.00 | 0.96 | 0.97 |
6 | 200 | 120 | 0.85 | 4818 | 98.17 | 16.02 | 4758 ± 20 | 97.42 ± 1.20 | 14.96 ± 0.33 | 0.99 | 0.99 | 0.93 |
(5c) PKS | ||||||||||||
1 | 350 | 120 | 0.85 | 6294 | 33.18 | 34.87 | 6253 ± 25 | 32.43 ± 0.29 | 33.67 ± 0.15 | 0.99 | 0.98 | 0.97 |
2 | 350 | 75 | 0.6 | 6066 | 41.68 | 31.83 | 6054 ± 20 | 39.59 ± 0.15 | 31.36 ± 0.35 | 1.00 | 0.95 | 0.98 |
3 | 350 | 75 | 1 | 6019 | 43.18 | 31.63 | 6002 ± 25 | 39.96 ± 0.30 | 30.95 ± 0.30 | 1.00 | 0.93 | 0.98 |
4 | 275 | 120 | 0.6 | 5551 | 78.29 | 24.95 | 5435 ± 45 | 77.84 ± 0.63 | 24.61 ± 0.10 | 0.98 | 0.99 | 0.99 |
5 | 275 | 30 | 0.6 | 5065 | 91.76 | 20.18 | 5069 ± 39 | 86.67 ± 0.48 | 19.96 ± 0.15 | 1.00 | 0.94 | 0.96 |
6 | 200 | 120 | 0.85 | 4644 | 99.94 | 17.31 | 4647 ± 20 | 96.45 ± 0.52 | 17.67 ± 0.20 | 1.00 | 0.97 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khamwichit, A.; Kasawapat, J.; Seekao, N.; Dechapanya, W. Enhanced Torrefied Oil-Palm Biomass as an Alternative Bio-Circular Solid Fuel: Innovative Modeling of Optimal Conditions and Ecoefficiency Analysis. Energies 2024, 17, 2192. https://doi.org/10.3390/en17092192
Khamwichit A, Kasawapat J, Seekao N, Dechapanya W. Enhanced Torrefied Oil-Palm Biomass as an Alternative Bio-Circular Solid Fuel: Innovative Modeling of Optimal Conditions and Ecoefficiency Analysis. Energies. 2024; 17(9):2192. https://doi.org/10.3390/en17092192
Chicago/Turabian StyleKhamwichit, Attaso, Jannisa Kasawapat, Narongsak Seekao, and Wipawee Dechapanya. 2024. "Enhanced Torrefied Oil-Palm Biomass as an Alternative Bio-Circular Solid Fuel: Innovative Modeling of Optimal Conditions and Ecoefficiency Analysis" Energies 17, no. 9: 2192. https://doi.org/10.3390/en17092192
APA StyleKhamwichit, A., Kasawapat, J., Seekao, N., & Dechapanya, W. (2024). Enhanced Torrefied Oil-Palm Biomass as an Alternative Bio-Circular Solid Fuel: Innovative Modeling of Optimal Conditions and Ecoefficiency Analysis. Energies, 17(9), 2192. https://doi.org/10.3390/en17092192