Li4SiO4-Based Heat Carrier Derived from Different Silica Sources for Thermochemical Energy Storage
Abstract
:1. Introduction
2. Experimental Section
2.1. Synthesis of Li4SiO4-Based Materials
2.2. Characterizations and Performance Tests
3. Results and Discussion
4. Conclusions
- (1)
- The different kinds of Si sources varied greatly in phase compositions, morphology, and particle size. As a consequence, there were certain differences among the physicochemical properties of as-synthesized Li4SiO4-based samples, especially the Li4SiO4 purity, thus leading to their different CO2 capture performances as well as thermochemical energy storage performance;
- (2)
- Among these Li4SiO4 samples, those derived from silica microspheres (SPs) and silica sol (SS) exhibited the greatest and fastest isothermal CO2 adsorption performance, as high as 0.335 g/g within only 5 min at the optimal reaction temperature (720 °C). The complete regeneration of them could also be achieved within 20 min at 900 °C;
- (3)
- As a result, SP-L possessed an excellent heat storage capacity as high as 777.7 kJ/kg in the initial cyclic heat storage–releasing processes. However, it suffered a capacity decay of ~25 kJ/kg/cycle due to high-temperature sintering and exhibited a cumulative heat storage amount of 5.84 MJ/kg after 10 cycles.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Harindintwali, J.D.; Yuan, Z.; Wang, M.; Wang, F.; Li, S.; Yin, Z.; Huang, L.; Fu, Y.; Li, L.; Chang, S.X.; et al. Technologies and perspectives for achieving carbon neutrality. Innovation 2021, 2, 100180. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Yu, D.; Yao, H.; Liu, X.; Qiao, Y. Coal combustion-generated aerosols: Formation and properties. Proc. Combust. Inst. 2011, 33, 1681–1697. [Google Scholar] [CrossRef]
- Leng, E.; Guo, Y.; Chen, J.; Liu, S.; Jiaqiang, E.; Xue, Y. A comprehensive review on lignin pyrolysis: Mechanism, modeling and the effects of inherent metals in biomass. Fuel 2022, 309, 122102. [Google Scholar] [CrossRef]
- Wang, W.; Yuan, B.; Sun, Q.; Wennersten, R. Application of energy storage in integrated energy systems—A solution to fluctuation and uncertainty of renewable energy. J. Energy Storag. 2022, 52, 104812. [Google Scholar] [CrossRef]
- Rana, M.; Uddin, M.; Sarkar, R.; Meraj, S.T.; Shafiullah, G.; Muyeen, S.; Islam, A.; Jamal, T. Applications of energy storage systems in power grids with and without renewable energy integration—A comprehensive review. J. Energy Storag. 2023, 68, 107811. [Google Scholar] [CrossRef]
- Olabi, A. Renewable energy and energy storage systems. Energy 2017, 136, 1–6. [Google Scholar] [CrossRef]
- Rahman, M.; Oni, A.O.; Gemechu, E.; Kumar, A. Assessment of energy storage technologies: A review. Energy Convers. Manag. 2020, 223, 113295. [Google Scholar] [CrossRef]
- Zhang, H.; Baeyens, J.; Cáceres, G.; Degrève, J.; Lv, Y. Thermal energy storage: Recent developments and practical aspects. Prog. Energy Combust. Sci. 2016, 53, 1–40. [Google Scholar] [CrossRef]
- Prieto, C.; Cooper, P.; Fernández, A.I.; Cabeza, L.F. Review of technology: Thermochemical energy storage for concentrated solar power plants. Renew. Sustain. Energy Rev. 2016, 60, 909–929. [Google Scholar] [CrossRef]
- Pelay, U.; Luo, L.; Fan, Y.; Stitou, D.; Rood, M. Thermal energy storage systems for concentrated solar power plants. Renew. Sustain. Energy Rev. 2017, 79, 82–100. [Google Scholar] [CrossRef]
- Ding, W.; Bauer, T. Progress in Research and Development of Molten Chloride Salt Technology for Next Generation Concentrated Solar Power Plants. Engineering 2021, 7, 334–347. [Google Scholar] [CrossRef]
- Raganati, F.; Ammendola, P. Review of Carbonate-Based Systems for Thermochemical Energy Storage for Concentrating Solar Power Applications: State-of-the-Art and Outlook. Energy Fuels 2023, 37, 1777–1808. [Google Scholar] [CrossRef]
- Prasad, J.S.; Muthukumar, P.; Desai, F.; Basu, D.N.; Rahman, M.M. A critical review of high-temperature reversible thermochemical energy storage systems. Appl. Energy 2019, 254, 113733. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, Y.; Duan, L.; Liu, H.; Zhao, J.; Wang, Z. CaO/Ca(OH)2 thermochemical heat storage of carbide slag from calcium looping cycles for CO2 capture. Energy Convers. Manag. 2018, 174, 8–19. [Google Scholar] [CrossRef]
- Li, Y.; Song, Y.; Wu, D.; Zhang, C.; Zhu, H. Highly active and stable Ca(OH)2-based thermochemical energy storage materials enabling direct solar absorption. J. Energy Storag. 2024, 84, 110885. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, Z.; Sun, J.; Liu, L.; Luo, F.; Xu, G.; Cao, X.E.; Xu, M. Ruddlesden-Popper-type perovskite Sr3Fe2O7−δ for enhanced thermochemical energy storage. EcoMat 2023, 5, e12347. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, L.; Guo, Q.; Zhu, X.; Liu, X.; Xu, M. Improving the Discharge Rate of Co3O4-Based Thermochemical Energy Storage Material with Eutectic Doping of Zr. Energy Fuels 2023, 37, 16087–16096. [Google Scholar] [CrossRef]
- Yang, L.; Huang, Z.; Huang, G. Fe- and Mn-Doped Ca-Based Materials for Thermochemical Energy Storage Systems. Energy Fuels 2020, 34, 11479–11488. [Google Scholar] [CrossRef]
- Bai, S.; Sun, J.; Zhou, Z.; Bu, C.; Chen, X.; Yang, Y.; Wang, R.; Guo, Y.; Zhao, C.; Liu, W. Structurally improved, TiO2-incorporated, CaO-based pellets for thermochemical energy storage in concentrated solar power plants. Sol. Energy Mater. Sol. Cells 2021, 226, 111076. [Google Scholar] [CrossRef]
- Han, R.; Xing, S.; Wu, X.; Pang, C.; Lu, S.; Su, Y.; Liu, Q.; Song, C.; Gao, J. Relevant influence of alkali carbonate doping on the thermochemical energy storage of Ca-based natural minerals during CaO/CaCO2 cycles. Renew. Energy 2021, 181, 267–277. [Google Scholar] [CrossRef]
- Zhang, Y.; Miao, Q.; Jia, X.; Jin, Y.; Li, Z.; Tan, L.; Ding, Y. Diatomite-based magnesium sulfate composites for thermochemical energy storage: Preparation and performance investigation. Sol. Energy 2021, 224, 907–915. [Google Scholar] [CrossRef]
- Takasu, H.; Ryu, J.; Kato, Y. Application of lithium orthosilicate for high-temperature thermochemical energy storage. Appl. Energy 2017, 193, 74–83. [Google Scholar] [CrossRef]
- Teng, L.; Xuan, Y.; Da, Y.; Liu, X.; Ding, Y. Modified Ca-Looping materials for directly capturing solar energy and high-temperature storage. Energy Storag. Mater. 2020, 25, 836–845. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, Y.; Pfeiffer, H.; Louis, B.; Sun, L.; O’Hare, D.; Wang, Q. Recent advances in lithium containing ceramic based sorbents for high-temperature CO2 capture. J. Mater. Chem. A 2019, 7, 7962–8005. [Google Scholar] [CrossRef]
- Tong, Y.; Chen, S.; Huang, X.; He, Y.; Chen, J.; Qin, C. CO2 capture by Li2SiO2 Sorbents: From fundamentals to applications. Sep. Purif. Technol. 2022, 301, 121977. [Google Scholar] [CrossRef]
- André, L.; Abanades, S.; Flamant, G. Screening of thermochemical systems based on solid-gas reversible reactions for high temperature solar thermal energy storage. Renew. Sustain. Energy Rev. 2016, 64, 703–715. [Google Scholar] [CrossRef]
- Takasu, H.; Hoshino, H.; Tamura, Y.; Kato, Y. Performance evaluation of thermochemical energy storage system based on lithium orthosilicate and zeolite. Appl. Energy 2019, 240, 1–5. [Google Scholar] [CrossRef]
- Takasu, H.; Kato, Y. Reactivity enhancement of lithium orthosilicate for thermochemical energy storage material usage. Energy Procedia 2017, 131, 94–100. [Google Scholar] [CrossRef]
- Fu, R.; Hu, Y.; Wang, J.; Yu, G.; Yan, S. Organolithium-derived alkali-doped highly durable Li4SiO4 heat carrier for solar thermochemical energy storage. Sol. Energy Mater. Sol. Cells 2023, 258, 112405. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, S.; Liu, W.; Zhou, Z.; Yang, Y. Fabrication of structure-improved, sintering-resistant Li4SiO4 materials for stabilized thermochemical energy storage in concentrated solar power plants. J. Energy Storag. 2023, 70, 108078. [Google Scholar] [CrossRef]
- Fu, R.; Huang, J.; Feng, Q.; Liu, D.; Hu, Y. Synthesis of dark Li4−3xFexSiO4 for simultaneous direct solar thermal conversion and durable thermochemical energy storage. J. Energy Storag. 2023, 73, 109053. [Google Scholar] [CrossRef]
- Esaki, T.; Iwase, D.; Kobayashi, N. Evaluation of Carbon Dioxide Absorption Characteristics Lithium Ortho-Silicate in Chemical Heat Storage. J. Mater. Sci. Chem. Eng. 2017, 5, 56–63. [Google Scholar] [CrossRef]
- Yan, X.; Wang, X.; Xia, W.; Lu, L.; Yang, Y.; Zhang, X.; Zhou, Z.; Liu, W. Screening of organic lithium precursors for producing high-performance Li4SiO4-based thermochemical energy storage materials: Experimental and kinetic investigations. J. Energy Storage 2024, 85, 111098. [Google Scholar] [CrossRef]
- Seggiani, M.; Puccini, M.; Vitolo, S. Alkali promoted lithium orthosilicate for CO2 capture at high temperature and low concentration. Int. J. Greenh. Gas Control. 2013, 17, 25–31. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Z.; Sun, X.; Yao, S.; Zhang, X.; Liu, W. Li4SiO4 adsorbent derived from industrial biomass fly ash for high-temperature CO2 capture. Fuel 2023, 337, 126853. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, W.; Hu, Y.; Sun, J.; Tong, X.; Chen, Q.; Li, Q. One-step synthesis of porous Li4SiO4-based adsorbent pellets via graphite moulding method for cyclic CO2 capture. Chem. Eng. J. 2018, 353, 92–99. [Google Scholar] [CrossRef]
- Yang, X.; Liu, W.; Sun, J.; Hu, Y.; Wang, W.; Chen, H.; Zhang, Y.; Li, X.; Xu, M. Preparation of Novel Li4SiO4 Sorbents with Superior Performance at Low CO2 Concentration. ChemSusChem 2016, 9, 1607–1613. [Google Scholar] [CrossRef]
- Izquierdo, M.T.; Turan, A.; García, S.; Maroto-Valer, M.M. Optimization of Li4SiO4 synthesis conditions by a solid state method for maximum CO2 capture at high temperature. J. Mater. Chem. A 2018, 6, 3249–3257. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, W.; Yang, Y.; Qu, M.; Li, H. CO2 capture by Li4SiO4 sorbents and their applications: Current developments and new trends. Chem. Eng. J. 2019, 359, 604–625. [Google Scholar] [CrossRef]
- Lv, Z.; Ruan, J.; Tu, W.; Hu, X.; He, D.; Huang, X.; Qin, C. Integrated CO2 capture and In-Situ methanation by efficient dual functional Li4SiO4@Ni/CeO2. Sep. Purif. Technol. 2023, 309, 123044. [Google Scholar] [CrossRef]
- Zubbri, N.A.; Mohamed, A.R.; Mohammadi, M. Parametric study and effect of calcination and carbonation conditions on the CO2 capture performance of lithium orthosilicate sorbent. Chin. J. Chem. Eng. 2018, 26, 631–641. [Google Scholar] [CrossRef]
- Li, H.; Qu, M.; Hu, Y. High-temperature CO2 capture by Li4SiO4 adsorbents: Effects of pyroligneous acid (PA) modification and existence of CO2 at desorption stage. Fuel Process. Technol. 2020, 197, 106186. [Google Scholar] [CrossRef]
Si Sources | Surface Area (m2/g) | Li4SiO4 Samples | Surface Area (m2/g) |
---|---|---|---|
S | 0.303 | S-L | 0.914 |
SP | 2.167 | SP-L | 1.825 |
SS | 237.802 | SS-L | 1.788 |
FS | 208.058 | FS-L | 1.883 |
SBA | 879.750 | SBA-L | 1.682 |
QS | 0.262 | QS-L | 0.810 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Xia, W.; Xu, W.; Chen, Z.; Ren, X.; Yang, Y. Li4SiO4-Based Heat Carrier Derived from Different Silica Sources for Thermochemical Energy Storage. Energies 2024, 17, 2180. https://doi.org/10.3390/en17092180
Wang X, Xia W, Xu W, Chen Z, Ren X, Yang Y. Li4SiO4-Based Heat Carrier Derived from Different Silica Sources for Thermochemical Energy Storage. Energies. 2024; 17(9):2180. https://doi.org/10.3390/en17092180
Chicago/Turabian StyleWang, Xicheng, Wentao Xia, Wenlong Xu, Zengqiao Chen, Xiaohan Ren, and Yuandong Yang. 2024. "Li4SiO4-Based Heat Carrier Derived from Different Silica Sources for Thermochemical Energy Storage" Energies 17, no. 9: 2180. https://doi.org/10.3390/en17092180
APA StyleWang, X., Xia, W., Xu, W., Chen, Z., Ren, X., & Yang, Y. (2024). Li4SiO4-Based Heat Carrier Derived from Different Silica Sources for Thermochemical Energy Storage. Energies, 17(9), 2180. https://doi.org/10.3390/en17092180