Towards a Net Zero-Emission Electricity Generation System by Optimizing Renewable Energy Sources and Nuclear Power Plant
Abstract
:1. Introduction
- creating electricity supply models that lead to a zero-emission electricity system by optimizing renewable energy sources and nuclear power, and
- conducting scenario analyses to achieve a zero-emission electrical power system by comparing various scenarios applicable to developing countries.
2. Methods
2.1. LEAP-NEMO Calculations
2.2. Scenario Development
2.2.1. Baseline Scenario
- GEP is restricted to conventional technologies (fossil fuels) used in the base year,
- renewable energy use has yet to set a target because the capacity of electricity generated using renewable energy sources during the planning period is equal to what was installed in the base year and
- there are no restrictions on using fossil fuels to generate electricity; therefore, there are no emission limits.
2.2.2. NZE1 Scenario
- CO2 emission in 2060 must be zero,
- the addition of electricity generation capacity using renewable energy sources is limited by their technical potential,
- all electricity generation technologies, namely electricity generation using conventional technology, renewable energy technology, and nuclear technology, are competed concurrently through optimization calculations, with a target of zero emissions by 2060,
- power plants that use diesel fuel, whether with diesel engines or gas turbines, will no longer be used beginning in 2045 and
- NPP technology is limited to the advanced cost of small modular reactors (SMRs) and large reactors (LRs) technology.
2.2.3. NZE2 Scenario
2.3. Data and Data Sources of Case Study
2.3.1. Existing Electricity System and Renewable Energy Potential of Sumatera
2.3.2. Demography and Economy
2.3.3. Power Plant Characteristics
2.3.4. Nuclear Power Plants
2.3.5. Energy Storage Characteristics
3. Results
3.1. Demand Projection
3.2. Electricity Supply
3.3. Environmental and Cost
4. Implication of the Study
4.1. Practical Implications
4.2. Policy Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ALWR | Advance light water reactor |
CFPP | Coal fired power plant |
CAPEX | Capital expenditure |
GEP | Generation energy planning |
GDP | Gross domestic product |
IPCC | Intergovernmental panel on climate change |
LEAP | Low-emission analysis platform |
LR | Large reactor |
LWR | Light water reactor |
NEMO | Next Energy Modeling for Optimization |
NGCC | Natural gas combined cycle |
NPP | Nuclear power plant |
NZE | Net zero emission |
OPEX | Operation and maintenance expenditure |
PSH | Pumped storage hydropower |
PV | Photovoltaic |
SMR | Small modular reactor |
VRE | Variable renewable energy |
References
- United Nations Causes and Effects of Climate Change. Available online: https://www.un.org/en/climatechange/science/causes-effects-climate-change (accessed on 1 April 2023).
- EPA Global Greenhouse Gas Emissions Data. Available online: https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data (accessed on 12 May 2023).
- NAS. The Royal Society. In Climate Change, Evidence, & Causes; The National Academies Press: Washington, DC, USA, 2021. [Google Scholar]
- European Commission Consequences of Climate Change. Available online: https://climate.ec.europa.eu/climate-change/consequences-climate-change_en (accessed on 12 May 2023).
- Malhi, Y.; Franklin, J.; Seddon, N.; Solan, M.; Turner, M.G.; Field, C.B.; Knowlton, N. Climate Change and Ecosystems: Threats, Opportunities and Solutions. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190104. [Google Scholar] [CrossRef] [PubMed]
- Abbass, K.; Qasim, M.Z.; Song, H.; Murshed, M.; Mahmood, H.; Younis, I. A Review of the Global Climate Change Impacts, Adaptation, and Sustainable Mitigation Measures. Environ. Sci. Pollut. Res. 2022, 29, 42539–42559. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Summary for Policymakers. In Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Shukla, P.R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- IEA. CO2 Emissions in 2022; IEA: Paris, France, 2023. [Google Scholar]
- Hannah Ritchie, M.R.P.R. CO2 and Greenhouse Gas Emissions. Our World Data 2020. Available online: https://ourworldindata.org/co2-and-greenhouse-gas-emissions (accessed on 12 January 2024).
- IEA. CO2 Emissions from Electricity and Heat Production by Fuel, and Share by Fuel, 2000–2021. Available online: https://www.iea.org/data-and-statistics/charts/co2-emissions-from-electricity-and-heat-production-by-fuel-and-share-by-fuel-2000-2021 (accessed on 12 May 2023).
- IRENA. World Outlook 2023 Transitions Energy 1.5 °C Pathway; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2023. [Google Scholar]
- International Energy Agency International Energy Agency (IEA). World Energy Outlook 2022; International Energy Agency: Paris, France, 2022; p. 524. [Google Scholar]
- United Nations the Paris Agreement. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement?gad_source=1&gclid=CjwKCAjw_e2wBhAEEiwAyFFFo8OO0Vvz9J9StFycDYqOODq79D2k2JWgkY8sJd000M_xek5AUESYqBoCWZIQAvD_BwE (accessed on 20 December 2023).
- Pramudianto, A. Dari Kyoto Protocol 1997 Ke Paris Agreement 2015: Dinamika Diplomasi Perubahan Iklim Global Dan Asean Menuju 2020. Glob. J. Polit. Int. 2020, 18, 76–94. [Google Scholar] [CrossRef]
- Renné, D.S. Progress, Opportunities and Challenges of Achieving Net-Zero Emissions and 100 % Renewables. Sol. Compass 2022, 1, 100007. [Google Scholar] [CrossRef]
- Peng, Q.; Liu, W.; Zhang, Y.; Zeng, S.; Graham, B. Generation Planning for Power Companies with Hybrid Production Technologies under Multiple Renewable Energy Policies. Renew. Sustain. Energy Rev. 2023, 176, 113209. [Google Scholar] [CrossRef]
- Hasibi, R.A. Al Multi-Objective Analysis of Sustainable Generation Expansion Planning Based on Renewable Energy Potential: A Case Study of Bali Province of Indonesia. Int. J. Sustain. Energy Plan. Manag. 2021, 31, 189–210. [Google Scholar]
- Hasibi, A.; Adiprasetya, R.; Bawan, E.K. An Analysis of the Impact of the Covid-19 Pandemic on the Implementation of Renewable Energy in the Supply of Electricity. Int. J. Sustain. Energy Plan. Manag. 2023, 39, 3–21. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, Y.; Yang, H.; Wu, H. Net-Zero Energy Management and Optimization of Commercial Building Sectors with Hybrid Renewable Energy Systems Integrated with Energy Storage of Pumped Hydro and Hydrogen Taxis. Appl. Energy 2022, 321, 119312. [Google Scholar] [CrossRef]
- Heo, S.; Ko, J.; Kim, S.; Jeong, C.; Hwangbo, S.; Yoo, C. Explainable AI-Driven Net-Zero Carbon Roadmap for Petrochemical Industry Considering Stochastic Scenarios of Remotely Sensed Offshore Wind Energy. J. Clean. Prod. 2022, 379, 134793. [Google Scholar] [CrossRef]
- Adiprasetya, R.; Hasibi, A.; Haris, A. An Analysis of the Implementation of a Hybrid Renewable-Energy System in a Building by Considering the Reduction in Electricity Price Subsidies and the Reliability of the Grid. Clean Energy 2023, 7, 1125–1135. [Google Scholar]
- Mandel, T.; Kranzl, L.; Popovski, E.; Sensfuß, F.; Müller, A. Investigating Pathways to a Net - Zero Emissions Building Sector in the European Union: What Role for the Energy Efficiency First Principle? Energy Effic. 2023, 16, 22. [Google Scholar] [CrossRef]
- Hu, Y.; Wu, W. Can Fossil Energy Make a Soft Landing?—The Carbon-Neutral Pathway in China Accompanying CCS. Energy Policy 2023, 174, 113440. [Google Scholar] [CrossRef]
- Price, J.; Keppo, I.; Dodds, P.E. The Role of New Nuclear Power in the UK’ s Net-Zero Emissions Energy System Committee on Climate Change. Energy 2023, 262, 125450. [Google Scholar] [CrossRef]
- Andersson, K. Current Status of Carbon Capture, Utilization, and Storage Technologies in the Global Economy: A Survey of Technical Assessment. Fuel 2023, 342, 127776. [Google Scholar] [CrossRef]
- Sandberg, E.; Krook-riekkola, A. The Impact of Technology Availability on the Transition to Net-Zero Industry in Sweden. J. Clean. Prod. 2022, 363, 132594. [Google Scholar] [CrossRef]
- Nian, V.; Mignacca, B.; Locatelli, G. Policies toward Net-Zero: Benchmarking the Economic Competitiveness of Nuclear against Wind and Solar Energy. Appl. Energy 2022, 320, 119275. [Google Scholar] [CrossRef]
- Wei, X.; Liu, D.; Ye, S.; Chen, F.; Weng, J. ScienceDirect Optimal Sizing of Energy Storage in Generation Expansion Planning of New Power System with High Penetration of Renewable Energies. Energy Rep. 2023, 9, 1938–1947. [Google Scholar] [CrossRef]
- Liu, Z.; Du, Y. Evolution towards Dispatchable PV Using Forecasting, Storage, and Curtailment: A Review. Electr. Power Syst. Res. 2023, 223, 109554. [Google Scholar] [CrossRef]
- Yu, Y.; Du, E.; Chen, Z.; Su, Y.; Zhang, X.; Yang, H.; Wang, P.; Zhang, N. Optimal Portfolio of a 100 % Renewable Energy Generation Base Supported by Concentrating Solar Power. Renew. Sustain. Energy Rev. 2022, 170, 112937. [Google Scholar] [CrossRef]
- Tanwar, M.D.; Torres, F.A.; Alqahtani, A.M.; Tanwar, P.K.; Bhand, Y.; Doustdar, O. Promising Bioalcohols for Low-Emission Vehicles. Energies 2023, 16, 597. [Google Scholar] [CrossRef]
- Chapman, P.J.; Grayson, R.P.; Ziv, G. Science of the Total Environment Planting Hedgerows: Biomass Carbon Sequestration and Contribution towards Net-Zero Targets. Sci. Total Environ. 2023, 892, 164482. [Google Scholar] [CrossRef]
- IEA. Projected Costs of Generating Electricity 2020; International Energy Agency: Paris, France, 2020. [Google Scholar]
- Calikoglu, U.; Aydinalp, M. A Pathway to Achieve the Net Zero Emissions Target for the Public Electricity and Heat Production Sector: A Case Study for Türkiye. Energy Policy 2023, 179, 113653. [Google Scholar] [CrossRef]
- Millot, A.; Krook-riekkola, A.; Maïzi, N. Guiding the Future Energy Transition to Net-Zero Emissions: Lessons from Exploring the Differences between France and Sweden. Energy Policy 2020, 139, 111358. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Banerjee, R.; Ramadesigan, V.; Liebman, A.; Dargaville, R. Bending the Emission Curve–The Role of Renewables and Nuclear Power in Achieving a Net-Zero Power System in India. Renew. Sustain. Energy Rev. 2024, 189, 113954. [Google Scholar] [CrossRef]
- Kim, J.H.; Alameri, S.A. Harmonizing Nuclear and Renewable Energy: Case Studies. Int. J. Energy Res. 2020, 44, 8053–8061. [Google Scholar] [CrossRef]
- Zhai, H.; Gu, B.; Zhu, K.; Huang, C. Feasibility Analysis of Achieving Net-Zero Emissions in China’ s Power Sector before 2050 Based on Ideal Available Pathways. Environ. Impact Assess. Rev. 2023, 98, 106948. [Google Scholar] [CrossRef]
- Rahmanta, M.A.; Harto, A.W.; Agung, A.; Ridwan, M.K. Nuclear Power Plant to Support Indonesia’s Net Zero Emissions: A Case Study of Small Modular Reactor Technology Selection Using Technology Readiness Level and Levelized Cost of Electricity Comparing Method. Energies 2023, 16, 3752. [Google Scholar] [CrossRef]
- PT PLN (Persero) Statistik PLN 2022. 2023. Available online: https://web.pln.co.id/stakeholder/laporan-statistik (accessed on 19 December 2023).
- Reyseliani, N.; Hidayatno, A.; Purwanto, W.W. Implication of the Paris Agreement Target on Indonesia Electricity Sector Transition to 2050 Using TIMES Model. Energy Policy 2022, 169, 113184. [Google Scholar] [CrossRef]
- PT PLN (Persero). Optimalisasi Strategi Mewujudkan Transisi Energi Berkelanjutan Optimizing Strategy in Realizing Sustainable Energy Transition; PT PLN (Persero): Jakarta, Indonesia, 2021. [Google Scholar]
- Heaps, C.G. LEAP: The Low Emissions Analysis Platform. Available online: https://leap.sei.org (accessed on 31 August 2023).
- Wambui, V.; Njoka, F.; Muguthu, J.; Ndwali, P. Scenario Analysis of Electricity Pathways in Kenya Using Low Emissions Analysis Platform and the Next Energy Modeling System for Optimization. Renew. Sustain. Energy Rev. 2022, 168, 112871. [Google Scholar] [CrossRef]
- Malka, L.; Bidaj, F.; Kuriqi, A.; Jaku, A.; Roçi, R. Energy System Analysis with a Focus on Future Energy Demand Projections: The Case of Norway. Energy 2023, 272, 127107. [Google Scholar] [CrossRef]
- Zivkovi, M.; Ivezi, D. Integrated Energy Planning Approach for Accelerating Energy Transition of Households. Energy Rep. 2023, 10, 4641–4650. [Google Scholar] [CrossRef]
- Zhai, J.; She, L.; Hao, S.; Liu, H. ScienceDirect Projection of Regional Carbon Emissions and Analysis of Emission Reduction Potential under Multiple Scenarios. Energy Rep. 2023, 9, 753–761. [Google Scholar] [CrossRef]
- Ayuketah, Y.; Gyamfi, S.; Amankwah, F.; Dagoumas, A.S. Power Generation Expansion Pathways: A Policy Analysis of the Cameroon Power System. Energy Strateg. Rev. 2022, 44, 101004. [Google Scholar] [CrossRef]
- Nyarko, E.; Mahama, M. Greenhouse Gas (GHG) Emissions Reduction in the Electricity Sector: Implications of Increasing Renewable Energy Penetration in Ghana’ s Electricity Generation Mix. Sci. Afr. 2023, 21, e01843. [Google Scholar] [CrossRef]
- Amo-aidoo, A.; Kumi, E.N.; Hensel, O.; Korese, J.K.; Sturm, B. Solar Energy Policy Implementation in Ghana: A LEAP Model Analysis. Sci. Afr. 2022, 16, e01162. [Google Scholar] [CrossRef]
- Handayani, K.; Overland, I.; Suryadi, B.; Vakulchuk, R. Integrating 100 % Renewable Energy into Electricity Systems: A Net-Zero Analysis for Cambodia, Laos, and Myanmar. Energy Rep. 2023, 10, 4849–4869. [Google Scholar] [CrossRef]
- Habtu, D.; Ahlgren, E.O.; Bekele, G. Long-Term Electricity Supply Modelling in the Context of Developing Countries: The OSeMOSYS-LEAP Soft-Linking Approach for Ethiopia. Energy Strateg. Rev. 2023, 45, 101045. [Google Scholar] [CrossRef]
- Kementerian Energi & Sumber Daya Mineral. Draft RUKN 2023-2060; Kementerian Energi & Sumber Daya Mineral: Jakarta, Indonesia, 2023. [Google Scholar]
- Kementerian Energi & Sumber Daya Mineral. Rencana Usaha Penyediaan Tenaga Listrik (RUPTL) PT. PLN (Persero) 2021–2030; Kementerian Energi & Sumber Daya Mineral: Jakarta, Indonesia, 2021. [Google Scholar]
- President of Republic Indonesia. Peraturan Presiden Republik Indonesia Nomor 22 Tahun 2017 Tentang Rencana Umum Energi Nasional; Kementerian Energi & Sumber Daya Mineral: Jakarta, Indonesia, 2017. [Google Scholar]
- Badan Pusat Statistik Republik Indonesia Jumlah Penduduk Pertengahan Tahun (Ribu Jiwa), 2021–2023. Available online: https://www.bps.go.id/indicator/12/1975/1/jumlah-penduduk-pertengahan-tahun.html (accessed on 30 August 2023).
- BPS. Proyeksi Penduduk Indonesia 2020–2050: Hasil Sensus Penduduk 2020; BPS: Jakarta, Indonesia, 2023; ISBN 9786024385217. [Google Scholar]
- BPS. Produk Domestik Regional Bruto Provinsi-Provinsi Di Indonesia Menurut Lapangan Usaha; BPS: Jakarta, Indonesia, 2023. [Google Scholar]
- Bank of Indonesia Inflation Data. Available online: https://www.bi.go.id/en/statistik/indikator/data-inflasi.aspx (accessed on 3 September 2023).
- NREL Annual Technology Baseline Approach and Methodology 2022. Available online: https://atb.nrel.gov/electricity/2022/approach_&_methodology (accessed on 4 January 2024).
- Rahmanta, M.A.; Adhi, A.C.; Tambunan, H.B.; Digwijaya, W.; Damanik, N.; Adiprasetya, R.; Hasibi, A. An Analysis of National Position, Opportunity, and Challenge of Indonesia ’ s Nuclear Program to Support Net Zero Emission. Energies 2023, 16, 8089. [Google Scholar] [CrossRef]
- NASA. POWER|Data Access Viewer. Available online: https://power.larc.nasa.gov/data-access-viewer/ (accessed on 17 January 2023).
- IPCC. Fifth Assessment Report. Available online: https://www.ipcc.ch/reports/?rp=ar5 (accessed on 18 January 2024).
- Goldberg, S.M.; Rosner, R. Nuclear Reactors: Generation to Generation; The American Academy of Arts and Sciences: Cambridge, MA, USA, 2011; ISBN 0877240906. [Google Scholar]
- Reinberger, D.; Ajanovic, A.; Haas, R. The Technological Development of Different Generations and Reactor Concepts. Energy Policy Clim. Prot. 2019, 243–258. [Google Scholar] [CrossRef]
- UNECE. Technology Brief Nuclear Power; UNECE: Geneva, Switzerland, 2020. [Google Scholar]
- Mignacca, B.; Locatelli, G. Economics and Finance of Small Modular Reactors: A Systematic Review and Research Agenda. Renew. Sustain. Energy Rev. 2020, 118, 109519. [Google Scholar] [CrossRef]
- IAEA. Status of Innovative Small and Medium Sized Reactor Designs 2005; IAEA: Vienna, Austria, 2006; ISBN 9201010060. [Google Scholar]
- Oettingen, M. Modelling of the Reactor Cycle Cost for Thorium-Fuelled PWR and Environmental Aspects of a Nuclear Fuel Cycle. Geol. Geophys. Environ. 2019, 45, 207. [Google Scholar] [CrossRef]
- Kim, J.H.; Song, M.M.; Alameri, S.A. Emerging Areas of Nuclear Power Applications. Nucl. Eng. Des. 2019, 354, 110183. [Google Scholar] [CrossRef]
- Schaffrath, A.; Wielenberg, A.; Kilger, R.; Seubert, A. SMRs—Overview, International Developments, Safety Features and the GRS Simulation Chain. Front. Energy 2021, 15, 793–809. [Google Scholar] [CrossRef]
- Lloyd, C.A.; Roulstone, T.; Lyons, R.E. Transport, Constructability, and Economic Advantages of SMR Modularization. Prog. Nucl. Energy 2021, 134, 103672. [Google Scholar] [CrossRef]
- Zhang, N.; Zheng, J.; Song, G.; Zhao, H. Regional Comprehensive Environmental Impact Assessment of Renewable Energy System in California. J. Clean. Prod. 2022, 376, 134349. [Google Scholar] [CrossRef]
- Kumar, K.; Roy, C.; Yadav, D.; Verma, R.; Dutta, S.; Smriti, K.; Selva, K.; Karuppasamy, K. Renewable and Sustainable Clean Energy Development and Impact on Social, Economic, and Environmental Health. Energy Nexus 2022, 7, 100118. [Google Scholar] [CrossRef]
- Terrapon-pfa, J.; Fink, T.; Viebahn, P.; Mostafa, E. Social Impacts of Large-Scale Solar Thermal Power Plants: Assessment Results for the NOOR O I Power Plant in Morocco. Renew. Sustain. Energy Rev. 2019, 113, 109259. [Google Scholar] [CrossRef]
- Santosa, J.; Kuncoro, A.H.; Dwijatmiko, A.; Hesty, N.W.; Darmawan, A. The Role of Nuclear Power Plants in Indonesia towards Net Zero Emissions (NZE) in 2060 with a Multi Regions Approach. Evergreen 2023, 10, 1660–1673. [Google Scholar] [CrossRef]
Power Generations | Addition Size (MW) | Efficiency (%) | Capacity Credit (%) | Maximum Availability (%) | Lifetime (Year) |
---|---|---|---|---|---|
CFPP | 600 | 35 | 100 | 90 | 40 |
GT CC | 100 | 56 | 100 | 95 | 30 |
Gas Turbine | 20 | 33 | 100 | 97 | 30 |
Hydro | 50 | 100 | 51 | 41 | 80 |
Geothermal | 50 | 100 | 80 | 90 | 30 |
Biomass | 50 | 35 | 100 | 90 | 40 |
PV | 10 | 100 | 22 | Figure 9 | 25 |
Wind | 10 | 100 | 35 | Figure 10 | 25 |
NPP (SMR) | 300 | 42 | 100 | 83 | 60 |
NPP (ALWR) | 1300 | 36 | 100 | 95 | 60 |
NPP (LWR) | 950 | 33 | 100 | 95 | 60 |
Type | Capex ($/kW) | Fixed Opex ($/kW-yr) | Variable Opex ($/kwh) |
---|---|---|---|
Battery | 3944 | 99 | - |
PSH | 2395 | 17.80 | 0.51 |
Fuel | Unit | Price | ||
---|---|---|---|---|
2020 | 2030 | 2060 | ||
Oil | USD/Barrel | 61.10 | 110.00 | 100.00 |
Coal subituminous | USD/Ton | 61.13 | 60.00 | 68.00 |
Natural Gas | USD/MMBTU | 6.78 | 8.00 | 11.00 |
U235 | USD/kg | 0.68 | 0.7 | 0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahmanta, M.A.; Hasibi, R.A.A.; Tambunan, H.B.; Ruly; Syamsuddin, A.; Aditya, I.A.; Susanto, B. Towards a Net Zero-Emission Electricity Generation System by Optimizing Renewable Energy Sources and Nuclear Power Plant. Energies 2024, 17, 1958. https://doi.org/10.3390/en17081958
Rahmanta MA, Hasibi RAA, Tambunan HB, Ruly, Syamsuddin A, Aditya IA, Susanto B. Towards a Net Zero-Emission Electricity Generation System by Optimizing Renewable Energy Sources and Nuclear Power Plant. Energies. 2024; 17(8):1958. https://doi.org/10.3390/en17081958
Chicago/Turabian StyleRahmanta, Mujammil Asdhiyoga, Rahmat Adiprasetya Al Hasibi, Handrea Bernando Tambunan, Ruly, Agussalim Syamsuddin, Indra Ardhanayudha Aditya, and Benny Susanto. 2024. "Towards a Net Zero-Emission Electricity Generation System by Optimizing Renewable Energy Sources and Nuclear Power Plant" Energies 17, no. 8: 1958. https://doi.org/10.3390/en17081958
APA StyleRahmanta, M. A., Hasibi, R. A. A., Tambunan, H. B., Ruly, Syamsuddin, A., Aditya, I. A., & Susanto, B. (2024). Towards a Net Zero-Emission Electricity Generation System by Optimizing Renewable Energy Sources and Nuclear Power Plant. Energies, 17(8), 1958. https://doi.org/10.3390/en17081958